MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Structured version   Visualization version   GIF version

Theorem rlimres 14289
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)

Proof of Theorem rlimres
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . . . 8 (dom 𝐹𝐵) ⊆ dom 𝐹
2 ssralv 3666 . . . . . . . 8 ((dom 𝐹𝐵) ⊆ dom 𝐹 → (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
31, 2ax-mp 5 . . . . . . 7 (∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
43reximi 3011 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
54ralimi 2952 . . . . 5 (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))
65anim2i 593 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)))
76a1i 11 . . 3 (𝐹𝑟 𝐴 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥)) → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
8 rlimf 14232 . . . 4 (𝐹𝑟 𝐴𝐹:dom 𝐹⟶ℂ)
9 rlimss 14233 . . . 4 (𝐹𝑟 𝐴 → dom 𝐹 ⊆ ℝ)
10 eqidd 2623 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
118, 9, 10rlim 14226 . . 3 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ dom 𝐹(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
12 fssres 6070 . . . . . 6 ((𝐹:dom 𝐹⟶ℂ ∧ (dom 𝐹𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
138, 1, 12sylancl 694 . . . . 5 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ)
14 resres 5409 . . . . . . 7 ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹 ↾ (dom 𝐹𝐵))
15 ffn 6045 . . . . . . . . 9 (𝐹:dom 𝐹⟶ℂ → 𝐹 Fn dom 𝐹)
16 fnresdm 6000 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
178, 15, 163syl 18 . . . . . . . 8 (𝐹𝑟 𝐴 → (𝐹 ↾ dom 𝐹) = 𝐹)
1817reseq1d 5395 . . . . . . 7 (𝐹𝑟 𝐴 → ((𝐹 ↾ dom 𝐹) ↾ 𝐵) = (𝐹𝐵))
1914, 18syl5eqr 2670 . . . . . 6 (𝐹𝑟 𝐴 → (𝐹 ↾ (dom 𝐹𝐵)) = (𝐹𝐵))
2019feq1d 6030 . . . . 5 (𝐹𝑟 𝐴 → ((𝐹 ↾ (dom 𝐹𝐵)):(dom 𝐹𝐵)⟶ℂ ↔ (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ))
2113, 20mpbid 222 . . . 4 (𝐹𝑟 𝐴 → (𝐹𝐵):(dom 𝐹𝐵)⟶ℂ)
221, 9syl5ss 3614 . . . 4 (𝐹𝑟 𝐴 → (dom 𝐹𝐵) ⊆ ℝ)
23 inss2 3834 . . . . . . 7 (dom 𝐹𝐵) ⊆ 𝐵
2423sseli 3599 . . . . . 6 (𝑧 ∈ (dom 𝐹𝐵) → 𝑧𝐵)
25 fvres 6207 . . . . . 6 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2624, 25syl 17 . . . . 5 (𝑧 ∈ (dom 𝐹𝐵) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2726adantl 482 . . . 4 ((𝐹𝑟 𝐴𝑧 ∈ (dom 𝐹𝐵)) → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
2821, 22, 27rlim 14226 . . 3 (𝐹𝑟 𝐴 → ((𝐹𝐵) ⇝𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧 ∈ (dom 𝐹𝐵)(𝑦𝑧 → (abs‘((𝐹𝑧) − 𝐴)) < 𝑥))))
297, 11, 283imtr4d 283 . 2 (𝐹𝑟 𝐴 → (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴))
3029pm2.43i 52 1 (𝐹𝑟 𝐴 → (𝐹𝐵) ⇝𝑟 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574   class class class wbr 4653  dom cdm 5114  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   < clt 10074  cle 10075  cmin 10266  +crp 11832  abscabs 13974  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-rlim 14220
This theorem is referenced by:  rlimres2  14292  pnt  25303
  Copyright terms: Public domain W3C validator