| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimres | Structured version Visualization version Unicode version | ||
| Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3833 |
. . . . . . . 8
| |
| 2 | ssralv 3666 |
. . . . . . . 8
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . . . 7
|
| 4 | 3 | reximi 3011 |
. . . . . 6
|
| 5 | 4 | ralimi 2952 |
. . . . 5
|
| 6 | 5 | anim2i 593 |
. . . 4
|
| 7 | 6 | a1i 11 |
. . 3
|
| 8 | rlimf 14232 |
. . . 4
| |
| 9 | rlimss 14233 |
. . . 4
| |
| 10 | eqidd 2623 |
. . . 4
| |
| 11 | 8, 9, 10 | rlim 14226 |
. . 3
|
| 12 | fssres 6070 |
. . . . . 6
| |
| 13 | 8, 1, 12 | sylancl 694 |
. . . . 5
|
| 14 | resres 5409 |
. . . . . . 7
| |
| 15 | ffn 6045 |
. . . . . . . . 9
| |
| 16 | fnresdm 6000 |
. . . . . . . . 9
| |
| 17 | 8, 15, 16 | 3syl 18 |
. . . . . . . 8
|
| 18 | 17 | reseq1d 5395 |
. . . . . . 7
|
| 19 | 14, 18 | syl5eqr 2670 |
. . . . . 6
|
| 20 | 19 | feq1d 6030 |
. . . . 5
|
| 21 | 13, 20 | mpbid 222 |
. . . 4
|
| 22 | 1, 9 | syl5ss 3614 |
. . . 4
|
| 23 | inss2 3834 |
. . . . . . 7
| |
| 24 | 23 | sseli 3599 |
. . . . . 6
|
| 25 | fvres 6207 |
. . . . . 6
| |
| 26 | 24, 25 | syl 17 |
. . . . 5
|
| 27 | 26 | adantl 482 |
. . . 4
|
| 28 | 21, 22, 27 | rlim 14226 |
. . 3
|
| 29 | 7, 11, 28 | 3imtr4d 283 |
. 2
|
| 30 | 29 | pm2.43i 52 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-pm 7860 df-rlim 14220 |
| This theorem is referenced by: rlimres2 14292 pnt 25303 |
| Copyright terms: Public domain | W3C validator |