MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimres Structured version   Visualization version   Unicode version

Theorem rlimres 14289
Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
rlimres  |-  ( F  ~~> r  A  ->  ( F  |`  B )  ~~> r  A
)

Proof of Theorem rlimres
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3833 . . . . . . . 8  |-  ( dom 
F  i^i  B )  C_ 
dom  F
2 ssralv 3666 . . . . . . . 8  |-  ( ( dom  F  i^i  B
)  C_  dom  F  -> 
( A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x )  ->  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) )
31, 2ax-mp 5 . . . . . . 7  |-  ( A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x )  ->  A. z  e.  ( dom  F  i^i  B ) ( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  x ) )
43reximi 3011 . . . . . 6  |-  ( E. y  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x )  ->  E. y  e.  RR  A. z  e.  ( dom 
F  i^i  B )
( y  <_  z  ->  ( abs `  (
( F `  z
)  -  A ) )  <  x ) )
54ralimi 2952 . . . . 5  |-  ( A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x )  ->  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) )
65anim2i 593 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x ) )  -> 
( A  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x ) ) )
76a1i 11 . . 3  |-  ( F  ~~> r  A  ->  (
( A  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR  A. z  e.  dom  F ( y  <_  z  ->  ( abs `  ( ( F `  z )  -  A ) )  <  x ) )  ->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) ) )
8 rlimf 14232 . . . 4  |-  ( F  ~~> r  A  ->  F : dom  F --> CC )
9 rlimss 14233 . . . 4  |-  ( F  ~~> r  A  ->  dom  F 
C_  RR )
10 eqidd 2623 . . . 4  |-  ( ( F  ~~> r  A  /\  z  e.  dom  F )  ->  ( F `  z )  =  ( F `  z ) )
118, 9, 10rlim 14226 . . 3  |-  ( F  ~~> r  A  ->  ( F 
~~> r  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e. 
dom  F ( y  <_  z  ->  ( abs `  ( ( F `
 z )  -  A ) )  < 
x ) ) ) )
12 fssres 6070 . . . . . 6  |-  ( ( F : dom  F --> CC  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> CC )
138, 1, 12sylancl 694 . . . . 5  |-  ( F  ~~> r  A  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B ) --> CC )
14 resres 5409 . . . . . . 7  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
15 ffn 6045 . . . . . . . . 9  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
16 fnresdm 6000 . . . . . . . . 9  |-  ( F  Fn  dom  F  -> 
( F  |`  dom  F
)  =  F )
178, 15, 163syl 18 . . . . . . . 8  |-  ( F  ~~> r  A  ->  ( F  |`  dom  F )  =  F )
1817reseq1d 5395 . . . . . . 7  |-  ( F  ~~> r  A  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
1914, 18syl5eqr 2670 . . . . . 6  |-  ( F  ~~> r  A  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
2019feq1d 6030 . . . . 5  |-  ( F  ~~> r  A  ->  (
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> CC 
<->  ( F  |`  B ) : ( dom  F  i^i  B ) --> CC ) )
2113, 20mpbid 222 . . . 4  |-  ( F  ~~> r  A  ->  ( F  |`  B ) : ( dom  F  i^i  B ) --> CC )
221, 9syl5ss 3614 . . . 4  |-  ( F  ~~> r  A  ->  ( dom  F  i^i  B ) 
C_  RR )
23 inss2 3834 . . . . . . 7  |-  ( dom 
F  i^i  B )  C_  B
2423sseli 3599 . . . . . 6  |-  ( z  e.  ( dom  F  i^i  B )  ->  z  e.  B )
25 fvres 6207 . . . . . 6  |-  ( z  e.  B  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
2624, 25syl 17 . . . . 5  |-  ( z  e.  ( dom  F  i^i  B )  ->  (
( F  |`  B ) `
 z )  =  ( F `  z
) )
2726adantl 482 . . . 4  |-  ( ( F  ~~> r  A  /\  z  e.  ( dom  F  i^i  B ) )  ->  ( ( F  |`  B ) `  z
)  =  ( F `
 z ) )
2821, 22, 27rlim 14226 . . 3  |-  ( F  ~~> r  A  ->  (
( F  |`  B )  ~~> r  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  RR  A. z  e.  ( dom  F  i^i  B ) ( y  <_ 
z  ->  ( abs `  ( ( F `  z )  -  A
) )  <  x
) ) ) )
297, 11, 283imtr4d 283 . 2  |-  ( F  ~~> r  A  ->  ( F 
~~> r  A  ->  ( F  |`  B )  ~~> r  A
) )
3029pm2.43i 52 1  |-  ( F  ~~> r  A  ->  ( F  |`  B )  ~~> r  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   abscabs 13974    ~~> r crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-pm 7860  df-rlim 14220
This theorem is referenced by:  rlimres2  14292  pnt  25303
  Copyright terms: Public domain W3C validator