Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnsnf Structured version   Visualization version   GIF version

Theorem rnsnf 39370
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnsnf.1 (𝜑𝐴𝑉)
rnsnf.2 (𝜑𝐹:{𝐴}⟶𝐵)
Assertion
Ref Expression
rnsnf (𝜑 → ran 𝐹 = {(𝐹𝐴)})

Proof of Theorem rnsnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsni 4194 . . . . . . 7 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
21fveq2d 6195 . . . . . 6 (𝑥 ∈ {𝐴} → (𝐹𝑥) = (𝐹𝐴))
32mpteq2ia 4740 . . . . 5 (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴))
43a1i 11 . . . 4 (𝜑 → (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)) = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
5 rnsnf.2 . . . . 5 (𝜑𝐹:{𝐴}⟶𝐵)
65feqmptd 6249 . . . 4 (𝜑𝐹 = (𝑥 ∈ {𝐴} ↦ (𝐹𝑥)))
7 rnsnf.1 . . . . 5 (𝜑𝐴𝑉)
8 fvexd 6203 . . . . 5 (𝜑 → (𝐹𝐴) ∈ V)
9 fmptsn 6433 . . . . 5 ((𝐴𝑉 ∧ (𝐹𝐴) ∈ V) → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
107, 8, 9syl2anc 693 . . . 4 (𝜑 → {⟨𝐴, (𝐹𝐴)⟩} = (𝑥 ∈ {𝐴} ↦ (𝐹𝐴)))
114, 6, 103eqtr4d 2666 . . 3 (𝜑𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
1211rneqd 5353 . 2 (𝜑 → ran 𝐹 = ran {⟨𝐴, (𝐹𝐴)⟩})
13 rnsnopg 5614 . . 3 (𝐴𝑉 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
147, 13syl 17 . 2 (𝜑 → ran {⟨𝐴, (𝐹𝐴)⟩} = {(𝐹𝐴)})
1512, 14eqtrd 2656 1 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183  cmpt 4729  ran crn 5115  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fsneqrn  39403  unirnmapsn  39406  sge0sn  40596
  Copyright terms: Public domain W3C validator