Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnsnf Structured version   Visualization version   Unicode version

Theorem rnsnf 39370
Description: The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rnsnf.1  |-  ( ph  ->  A  e.  V )
rnsnf.2  |-  ( ph  ->  F : { A }
--> B )
Assertion
Ref Expression
rnsnf  |-  ( ph  ->  ran  F  =  {
( F `  A
) } )

Proof of Theorem rnsnf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elsni 4194 . . . . . . 7  |-  ( x  e.  { A }  ->  x  =  A )
21fveq2d 6195 . . . . . 6  |-  ( x  e.  { A }  ->  ( F `  x
)  =  ( F `
 A ) )
32mpteq2ia 4740 . . . . 5  |-  ( x  e.  { A }  |->  ( F `  x
) )  =  ( x  e.  { A }  |->  ( F `  A ) )
43a1i 11 . . . 4  |-  ( ph  ->  ( x  e.  { A }  |->  ( F `
 x ) )  =  ( x  e. 
{ A }  |->  ( F `  A ) ) )
5 rnsnf.2 . . . . 5  |-  ( ph  ->  F : { A }
--> B )
65feqmptd 6249 . . . 4  |-  ( ph  ->  F  =  ( x  e.  { A }  |->  ( F `  x
) ) )
7 rnsnf.1 . . . . 5  |-  ( ph  ->  A  e.  V )
8 fvexd 6203 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  _V )
9 fmptsn 6433 . . . . 5  |-  ( ( A  e.  V  /\  ( F `  A )  e.  _V )  ->  { <. A ,  ( F `  A )
>. }  =  ( x  e.  { A }  |->  ( F `  A
) ) )
107, 8, 9syl2anc 693 . . . 4  |-  ( ph  ->  { <. A ,  ( F `  A )
>. }  =  ( x  e.  { A }  |->  ( F `  A
) ) )
114, 6, 103eqtr4d 2666 . . 3  |-  ( ph  ->  F  =  { <. A ,  ( F `  A ) >. } )
1211rneqd 5353 . 2  |-  ( ph  ->  ran  F  =  ran  {
<. A ,  ( F `
 A ) >. } )
13 rnsnopg 5614 . . 3  |-  ( A  e.  V  ->  ran  {
<. A ,  ( F `
 A ) >. }  =  { ( F `  A ) } )
147, 13syl 17 . 2  |-  ( ph  ->  ran  { <. A , 
( F `  A
) >. }  =  {
( F `  A
) } )
1512, 14eqtrd 2656 1  |-  ( ph  ->  ran  F  =  {
( F `  A
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by:  fsneqrn  39403  unirnmapsn  39406  sge0sn  40596
  Copyright terms: Public domain W3C validator