| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq2ia | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1722 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | rgen 2922 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
| 5 | mpteq12f 4731 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 6 | 2, 4, 5 | mp2an 708 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Copyright terms: Public domain | W3C validator |