MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   GIF version

Theorem rntpos 7365
Description: The range of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)

Proof of Theorem rntpos
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5 𝑧 ∈ V
21elrn 5366 . . . 4 (𝑧 ∈ ran tpos 𝐹 ↔ ∃𝑤 𝑤tpos 𝐹𝑧)
3 vex 3203 . . . . . . . . 9 𝑤 ∈ V
43, 1breldm 5329 . . . . . . . 8 (𝑤tpos 𝐹𝑧𝑤 ∈ dom tpos 𝐹)
5 dmtpos 7364 . . . . . . . . 9 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
65eleq2d 2687 . . . . . . . 8 (Rel dom 𝐹 → (𝑤 ∈ dom tpos 𝐹𝑤dom 𝐹))
74, 6syl5ib 234 . . . . . . 7 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑤dom 𝐹))
8 relcnv 5503 . . . . . . . 8 Rel dom 𝐹
9 elrel 5222 . . . . . . . 8 ((Rel dom 𝐹𝑤dom 𝐹) → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
108, 9mpan 706 . . . . . . 7 (𝑤dom 𝐹 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
117, 10syl6 35 . . . . . 6 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧 → ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩))
12 breq1 4656 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
13 brtpos 7361 . . . . . . . . . 10 (𝑧 ∈ V → (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
141, 13ax-mp 5 . . . . . . . . 9 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧)
1512, 14syl6bb 276 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
16 opex 4932 . . . . . . . . 9 𝑦, 𝑥⟩ ∈ V
1716, 1brelrn 5356 . . . . . . . 8 (⟨𝑦, 𝑥𝐹𝑧𝑧 ∈ ran 𝐹)
1815, 17syl6bi 243 . . . . . . 7 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
1918exlimivv 1860 . . . . . 6 (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2011, 19syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
2120exlimdv 1861 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤tpos 𝐹𝑧𝑧 ∈ ran 𝐹))
222, 21syl5bi 232 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
231elrn 5366 . . . 4 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤 𝑤𝐹𝑧)
243, 1breldm 5329 . . . . . . 7 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
25 elrel 5222 . . . . . . . 8 ((Rel dom 𝐹𝑤 ∈ dom 𝐹) → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩)
2625ex 450 . . . . . . 7 (Rel dom 𝐹 → (𝑤 ∈ dom 𝐹 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
2724, 26syl5 34 . . . . . 6 (Rel dom 𝐹 → (𝑤𝐹𝑧 → ∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩))
28 breq1 4656 . . . . . . . . 9 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑦, 𝑥𝐹𝑧))
2928, 14syl6bbr 278 . . . . . . . 8 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧 ↔ ⟨𝑥, 𝑦⟩tpos 𝐹𝑧))
30 opex 4932 . . . . . . . . 9 𝑥, 𝑦⟩ ∈ V
3130, 1brelrn 5356 . . . . . . . 8 (⟨𝑥, 𝑦⟩tpos 𝐹𝑧𝑧 ∈ ran tpos 𝐹)
3229, 31syl6bi 243 . . . . . . 7 (𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3332exlimivv 1860 . . . . . 6 (∃𝑦𝑥 𝑤 = ⟨𝑦, 𝑥⟩ → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3427, 33syli 39 . . . . 5 (Rel dom 𝐹 → (𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3534exlimdv 1861 . . . 4 (Rel dom 𝐹 → (∃𝑤 𝑤𝐹𝑧𝑧 ∈ ran tpos 𝐹))
3623, 35syl5bi 232 . . 3 (Rel dom 𝐹 → (𝑧 ∈ ran 𝐹𝑧 ∈ ran tpos 𝐹))
3722, 36impbid 202 . 2 (Rel dom 𝐹 → (𝑧 ∈ ran tpos 𝐹𝑧 ∈ ran 𝐹))
3837eqrdv 2620 1 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cop 4183   class class class wbr 4653  ccnv 5113  dom cdm 5114  ran crn 5115  Rel wrel 5119  tpos ctpos 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-tpos 7352
This theorem is referenced by:  tposfo2  7375  oppchofcl  16900  oyoncl  16910
  Copyright terms: Public domain W3C validator