MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rntpos Structured version   Visualization version   Unicode version

Theorem rntpos 7365
Description: The range of tpos  F when  dom  F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
rntpos  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )

Proof of Theorem rntpos
Dummy variables  x  y  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5  |-  z  e. 
_V
21elrn 5366 . . . 4  |-  ( z  e.  ran tpos  F  <->  E. w  wtpos  F z )
3 vex 3203 . . . . . . . . 9  |-  w  e. 
_V
43, 1breldm 5329 . . . . . . . 8  |-  ( wtpos 
F z  ->  w  e.  dom tpos  F )
5 dmtpos 7364 . . . . . . . . 9  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
65eleq2d 2687 . . . . . . . 8  |-  ( Rel 
dom  F  ->  ( w  e.  dom tpos  F  <->  w  e.  `' dom  F ) )
74, 6syl5ib 234 . . . . . . 7  |-  ( Rel 
dom  F  ->  ( wtpos 
F z  ->  w  e.  `' dom  F ) )
8 relcnv 5503 . . . . . . . 8  |-  Rel  `' dom  F
9 elrel 5222 . . . . . . . 8  |-  ( ( Rel  `' dom  F  /\  w  e.  `' dom  F )  ->  E. x E. y  w  =  <. x ,  y >.
)
108, 9mpan 706 . . . . . . 7  |-  ( w  e.  `' dom  F  ->  E. x E. y  w  =  <. x ,  y >. )
117, 10syl6 35 . . . . . 6  |-  ( Rel 
dom  F  ->  ( wtpos 
F z  ->  E. x E. y  w  =  <. x ,  y >.
) )
12 breq1 4656 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  ( wtpos  F
z  <->  <. x ,  y
>.tpos  F z ) )
13 brtpos 7361 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
141, 13ax-mp 5 . . . . . . . . 9  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
1512, 14syl6bb 276 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( wtpos  F
z  <->  <. y ,  x >. F z ) )
16 opex 4932 . . . . . . . . 9  |-  <. y ,  x >.  e.  _V
1716, 1brelrn 5356 . . . . . . . 8  |-  ( <.
y ,  x >. F z  ->  z  e.  ran  F )
1815, 17syl6bi 243 . . . . . . 7  |-  ( w  =  <. x ,  y
>.  ->  ( wtpos  F
z  ->  z  e.  ran  F ) )
1918exlimivv 1860 . . . . . 6  |-  ( E. x E. y  w  =  <. x ,  y
>.  ->  ( wtpos  F
z  ->  z  e.  ran  F ) )
2011, 19syli 39 . . . . 5  |-  ( Rel 
dom  F  ->  ( wtpos 
F z  ->  z  e.  ran  F ) )
2120exlimdv 1861 . . . 4  |-  ( Rel 
dom  F  ->  ( E. w  wtpos  F z  ->  z  e.  ran  F ) )
222, 21syl5bi 232 . . 3  |-  ( Rel 
dom  F  ->  ( z  e.  ran tpos  F  ->  z  e.  ran  F ) )
231elrn 5366 . . . 4  |-  ( z  e.  ran  F  <->  E. w  w F z )
243, 1breldm 5329 . . . . . . 7  |-  ( w F z  ->  w  e.  dom  F )
25 elrel 5222 . . . . . . . 8  |-  ( ( Rel  dom  F  /\  w  e.  dom  F )  ->  E. y E. x  w  =  <. y ,  x >. )
2625ex 450 . . . . . . 7  |-  ( Rel 
dom  F  ->  ( w  e.  dom  F  ->  E. y E. x  w  =  <. y ,  x >. ) )
2724, 26syl5 34 . . . . . 6  |-  ( Rel 
dom  F  ->  ( w F z  ->  E. y E. x  w  =  <. y ,  x >. ) )
28 breq1 4656 . . . . . . . . 9  |-  ( w  =  <. y ,  x >.  ->  ( w F z  <->  <. y ,  x >. F z ) )
2928, 14syl6bbr 278 . . . . . . . 8  |-  ( w  =  <. y ,  x >.  ->  ( w F z  <->  <. x ,  y
>.tpos  F z ) )
30 opex 4932 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
3130, 1brelrn 5356 . . . . . . . 8  |-  ( <.
x ,  y >.tpos  F z  ->  z  e.  ran tpos  F )
3229, 31syl6bi 243 . . . . . . 7  |-  ( w  =  <. y ,  x >.  ->  ( w F z  ->  z  e.  ran tpos  F ) )
3332exlimivv 1860 . . . . . 6  |-  ( E. y E. x  w  =  <. y ,  x >.  ->  ( w F z  ->  z  e.  ran tpos  F ) )
3427, 33syli 39 . . . . 5  |-  ( Rel 
dom  F  ->  ( w F z  ->  z  e.  ran tpos  F ) )
3534exlimdv 1861 . . . 4  |-  ( Rel 
dom  F  ->  ( E. w  w F z  ->  z  e.  ran tpos  F ) )
3623, 35syl5bi 232 . . 3  |-  ( Rel 
dom  F  ->  ( z  e.  ran  F  -> 
z  e.  ran tpos  F ) )
3722, 36impbid 202 . 2  |-  ( Rel 
dom  F  ->  ( z  e.  ran tpos  F  <->  z  e.  ran  F ) )
3837eqrdv 2620 1  |-  ( Rel 
dom  F  ->  ran tpos  F  =  ran  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   Rel wrel 5119  tpos ctpos 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-tpos 7352
This theorem is referenced by:  tposfo2  7375  oppchofcl  16900  oyoncl  16910
  Copyright terms: Public domain W3C validator