| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgenss | Structured version Visualization version Unicode version | ||
| Description: The sigma-algebra generated by a set is the smallest sigma-algebra, on the same base set, that includes the set. Proposition 111G (b) of [Fremlin1] p. 13. Notice that the condition "on the same base set" is needed, see the counterexample salgensscntex 40562, where a sigma-algebra is shown that includes a set, but does not include the sigma-algebra generated (the key is that its base set is larger than the base set of the generating set). (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgenss.x |
|
| salgenss.g |
|
| salgenss.s |
|
| salgenss.i |
|
| salgenss.u |
|
| Ref | Expression |
|---|---|
| salgenss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgenss.g |
. . . 4
| |
| 2 | 1 | a1i 11 |
. . 3
|
| 3 | salgenss.x |
. . . 4
| |
| 4 | salgenval 40541 |
. . . 4
| |
| 5 | 3, 4 | syl 17 |
. . 3
|
| 6 | 2, 5 | eqtrd 2656 |
. 2
|
| 7 | salgenss.s |
. . . . 5
| |
| 8 | salgenss.u |
. . . . . 6
| |
| 9 | salgenss.i |
. . . . . 6
| |
| 10 | 8, 9 | jca 554 |
. . . . 5
|
| 11 | 7, 10 | jca 554 |
. . . 4
|
| 12 | unieq 4444 |
. . . . . . 7
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . 6
|
| 14 | sseq2 3627 |
. . . . . 6
| |
| 15 | 13, 14 | anbi12d 747 |
. . . . 5
|
| 16 | 15 | elrab 3363 |
. . . 4
|
| 17 | 11, 16 | sylibr 224 |
. . 3
|
| 18 | intss1 4492 |
. . 3
| |
| 19 | 17, 18 | syl 17 |
. 2
|
| 20 | 6, 19 | eqsstrd 3639 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-salg 40529 df-salgen 40533 |
| This theorem is referenced by: issalgend 40556 dfsalgen2 40559 borelmbl 40850 smfpimbor1lem2 41006 |
| Copyright terms: Public domain | W3C validator |