Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem2 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem2 41006
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem2.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem2.b 𝐵 = (SalGen‘𝐽)
smfpimbor1lem2.e (𝜑𝐸𝐵)
smfpimbor1lem2.p 𝑃 = (𝐹𝐸)
smfpimbor1lem2.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem2 (𝜑𝑃 ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐽   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝐵(𝑒)   𝑃(𝑒)   𝑇(𝑒)

Proof of Theorem smfpimbor1lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem2.p . 2 𝑃 = (𝐹𝐸)
2 smfpimbor1lem2.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 retop 22565 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2697 . . . . . . 7 𝐽 ∈ Top
54a1i 11 . . . . . 6 (𝜑𝐽 ∈ Top)
6 smfpimbor1lem2.b . . . . . 6 𝐵 = (SalGen‘𝐽)
7 smfpimbor1lem2.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
8 smfpimbor1lem2.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
9 smfpimbor1lem2.a . . . . . . 7 𝐷 = dom 𝐹
10 smfpimbor1lem2.t . . . . . . 7 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
117, 8, 9, 10smfresal 40995 . . . . . 6 (𝜑𝑇 ∈ SAlg)
127adantr 481 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑆 ∈ SAlg)
138adantr 481 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹 ∈ (SMblFn‘𝑆))
14 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝐽)
1512, 13, 9, 2, 14, 10smfpimbor1lem1 41005 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝑇)
1615ssd 39252 . . . . . 6 (𝜑𝐽𝑇)
17 nfcv 2764 . . . . . . . . . . . . . 14 𝑒𝑥
18 nfrab1 3122 . . . . . . . . . . . . . . 15 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
1910, 18nfcxfr 2762 . . . . . . . . . . . . . 14 𝑒𝑇
2017, 19eluni2f 39286 . . . . . . . . . . . . 13 (𝑥 𝑇 ↔ ∃𝑒𝑇 𝑥𝑒)
2120biimpi 206 . . . . . . . . . . . 12 (𝑥 𝑇 → ∃𝑒𝑇 𝑥𝑒)
2219nfuni 4442 . . . . . . . . . . . . . 14 𝑒 𝑇
2317, 22nfel 2777 . . . . . . . . . . . . 13 𝑒 𝑥 𝑇
24 nfv 1843 . . . . . . . . . . . . 13 𝑒 𝑥 ∈ ℝ
2510eleq2i 2693 . . . . . . . . . . . . . . . . . . . 20 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
2625biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
27 rabidim1 3117 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
29 elpwi 4168 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ⊆ ℝ)
3130adantr 481 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑒 ⊆ ℝ)
32 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑥𝑒)
3331, 32sseldd 3604 . . . . . . . . . . . . . . 15 ((𝑒𝑇𝑥𝑒) → 𝑥 ∈ ℝ)
3433ex 450 . . . . . . . . . . . . . 14 (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ))
3534a1i 11 . . . . . . . . . . . . 13 (𝑥 𝑇 → (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ)))
3623, 24, 35rexlimd 3026 . . . . . . . . . . . 12 (𝑥 𝑇 → (∃𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ))
3721, 36mpd 15 . . . . . . . . . . 11 (𝑥 𝑇𝑥 ∈ ℝ)
3837rgen 2922 . . . . . . . . . 10 𝑥 𝑇𝑥 ∈ ℝ
39 dfss3 3592 . . . . . . . . . 10 ( 𝑇 ⊆ ℝ ↔ ∀𝑥 𝑇𝑥 ∈ ℝ)
4038, 39mpbir 221 . . . . . . . . 9 𝑇 ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 𝑇 ⊆ ℝ)
42 uniretop 22566 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
432eqcomi 2631 . . . . . . . . . . . . 13 (topGen‘ran (,)) = 𝐽
4443unieqi 4445 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
4542, 44eqtr2i 2645 . . . . . . . . . . 11 𝐽 = ℝ
4645a1i 11 . . . . . . . . . 10 (𝜑 𝐽 = ℝ)
4746eqcomd 2628 . . . . . . . . 9 (𝜑 → ℝ = 𝐽)
4816unissd 4462 . . . . . . . . 9 (𝜑 𝐽 𝑇)
4947, 48eqsstrd 3639 . . . . . . . 8 (𝜑 → ℝ ⊆ 𝑇)
5041, 49eqssd 3620 . . . . . . 7 (𝜑 𝑇 = ℝ)
5150, 46eqtr4d 2659 . . . . . 6 (𝜑 𝑇 = 𝐽)
525, 6, 11, 16, 51salgenss 40554 . . . . 5 (𝜑𝐵𝑇)
53 smfpimbor1lem2.e . . . . 5 (𝜑𝐸𝐵)
5452, 53sseldd 3604 . . . 4 (𝜑𝐸𝑇)
55 imaeq2 5462 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
5655eleq1d 2686 . . . . 5 (𝑒 = 𝐸 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5756, 10elrab2 3366 . . . 4 (𝐸𝑇 ↔ (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5854, 57sylib 208 . . 3 (𝜑 → (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5958simprd 479 . 2 (𝜑 → (𝐹𝐸) ∈ (𝑆t 𝐷))
601, 59syl5eqel 2705 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  𝒫 cpw 4158   cuni 4436  ccnv 5113  dom cdm 5114  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  cr 9935  (,)cioo 12175  t crest 16081  topGenctg 16098  Topctop 20698  SAlgcsalg 40528  SalGencsalgen 40532  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-topgen 16104  df-top 20699  df-bases 20750  df-salg 40529  df-salgen 40533  df-smblfn 40910
This theorem is referenced by:  smfpimbor1  41007
  Copyright terms: Public domain W3C validator