MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 18881
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffval = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
9 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
108, 9syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
11 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
12 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1311, 12syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1413oveqd 6667 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
157, 10, 14mpt2eq123dv 6717 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
16 df-scaf 18866 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
17 df-ov 6653 . . . . . . . 8 (𝑥 · 𝑦) = ( · ‘⟨𝑥, 𝑦⟩)
18 fvrn0 6216 . . . . . . . 8 ( · ‘⟨𝑥, 𝑦⟩) ∈ (ran · ∪ {∅})
1917, 18eqeltri 2697 . . . . . . 7 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2019rgen2w 2925 . . . . . 6 𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
21 eqid 2622 . . . . . . 7 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
2221fmpt2 7237 . . . . . 6 (∀𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅}) ↔ (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅}))
2320, 22mpbi 220 . . . . 5 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅})
24 fvex 6201 . . . . . . 7 (Base‘𝐹) ∈ V
256, 24eqeltri 2697 . . . . . 6 𝐾 ∈ V
26 fvex 6201 . . . . . . 7 (Base‘𝑊) ∈ V
279, 26eqeltri 2697 . . . . . 6 𝐵 ∈ V
2825, 27xpex 6962 . . . . 5 (𝐾 × 𝐵) ∈ V
29 fvex 6201 . . . . . . . 8 ( ·𝑠𝑊) ∈ V
3012, 29eqeltri 2697 . . . . . . 7 · ∈ V
3130rnex 7100 . . . . . 6 ran · ∈ V
32 p0ex 4853 . . . . . 6 {∅} ∈ V
3331, 32unex 6956 . . . . 5 (ran · ∪ {∅}) ∈ V
34 fex2 7121 . . . . 5 (((𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)):(𝐾 × 𝐵)⟶(ran · ∪ {∅}) ∧ (𝐾 × 𝐵) ∈ V ∧ (ran · ∪ {∅}) ∈ V) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V)
3523, 28, 33, 34mp3an 1424 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V
3615, 16, 35fvmpt 6282 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
37 fvprc 6185 . . . . 5 𝑊 ∈ V → ( ·sf𝑊) = ∅)
38 mpt20 6725 . . . . 5 (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅
3937, 38syl6eqr 2674 . . . 4 𝑊 ∈ V → ( ·sf𝑊) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
40 fvprc 6185 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
413, 40syl5eq 2668 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
4241fveq2d 6195 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
436, 42syl5eq 2668 . . . . . 6 𝑊 ∈ V → 𝐾 = (Base‘∅))
44 base0 15912 . . . . . 6 ∅ = (Base‘∅)
4543, 44syl6eqr 2674 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
46 eqid 2622 . . . . 5 𝐵 = 𝐵
47 mpt2eq12 6715 . . . . 5 ((𝐾 = ∅ ∧ 𝐵 = 𝐵) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
4845, 46, 47sylancl 694 . . . 4 𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = (𝑥 ∈ ∅, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
4939, 48eqtr4d 2659 . . 3 𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
5036, 49pm2.61i 176 . 2 ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
511, 50eqtri 2644 1 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  c0 3915  {csn 4177  cop 4183   × cxp 5112  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945   ·sf cscaf 18864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-scaf 18866
This theorem is referenced by:  scafval  18882  scafeq  18883  scaffn  18884  lmodscaf  18885  rlmscaf  19208
  Copyright terms: Public domain W3C validator