MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   Unicode version

Theorem scaffval 18881
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
scaffval.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
scaffval  |-  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )
Distinct variable groups:    x, y, B    x, K, y    x,  .x. , y    x, W, y
Allowed substitution hints:    .xb ( x, y)    F( x, y)

Proof of Theorem scaffval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2  |-  .xb  =  ( .sf `  W
)
2 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
3 scaffval.f . . . . . . . 8  |-  F  =  (Scalar `  W )
42, 3syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
54fveq2d 6195 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
6 scaffval.k . . . . . 6  |-  K  =  ( Base `  F
)
75, 6syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
8 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
9 scaffval.b . . . . . 6  |-  B  =  ( Base `  W
)
108, 9syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
11 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
12 scaffval.s . . . . . . 7  |-  .x.  =  ( .s `  W )
1311, 12syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1413oveqd 6667 . . . . 5  |-  ( w  =  W  ->  (
x ( .s `  w ) y )  =  ( x  .x.  y ) )
157, 10, 14mpt2eq123dv 6717 . . . 4  |-  ( w  =  W  ->  (
x  e.  ( Base `  (Scalar `  w )
) ,  y  e.  ( Base `  w
)  |->  ( x ( .s `  w ) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) )
16 df-scaf 18866 . . . 4  |-  .sf 
=  ( w  e. 
_V  |->  ( x  e.  ( Base `  (Scalar `  w ) ) ,  y  e.  ( Base `  w )  |->  ( x ( .s `  w
) y ) ) )
17 df-ov 6653 . . . . . . . 8  |-  ( x 
.x.  y )  =  (  .x.  `  <. x ,  y >. )
18 fvrn0 6216 . . . . . . . 8  |-  (  .x.  ` 
<. x ,  y >.
)  e.  ( ran 
.x.  u.  { (/) } )
1917, 18eqeltri 2697 . . . . . . 7  |-  ( x 
.x.  y )  e.  ( ran  .x.  u.  {
(/) } )
2019rgen2w 2925 . . . . . 6  |-  A. x  e.  K  A. y  e.  B  ( x  .x.  y )  e.  ( ran  .x.  u.  { (/) } )
21 eqid 2622 . . . . . . 7  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) )
2221fmpt2 7237 . . . . . 6  |-  ( A. x  e.  K  A. y  e.  B  (
x  .x.  y )  e.  ( ran  .x.  u.  {
(/) } )  <->  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) : ( K  X.  B
) --> ( ran  .x.  u.  { (/) } ) )
2320, 22mpbi 220 . . . . 5  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) : ( K  X.  B ) --> ( ran 
.x.  u.  { (/) } )
24 fvex 6201 . . . . . . 7  |-  ( Base `  F )  e.  _V
256, 24eqeltri 2697 . . . . . 6  |-  K  e. 
_V
26 fvex 6201 . . . . . . 7  |-  ( Base `  W )  e.  _V
279, 26eqeltri 2697 . . . . . 6  |-  B  e. 
_V
2825, 27xpex 6962 . . . . 5  |-  ( K  X.  B )  e. 
_V
29 fvex 6201 . . . . . . . 8  |-  ( .s
`  W )  e. 
_V
3012, 29eqeltri 2697 . . . . . . 7  |-  .x.  e.  _V
3130rnex 7100 . . . . . 6  |-  ran  .x.  e.  _V
32 p0ex 4853 . . . . . 6  |-  { (/) }  e.  _V
3331, 32unex 6956 . . . . 5  |-  ( ran 
.x.  u.  { (/) } )  e.  _V
34 fex2 7121 . . . . 5  |-  ( ( ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) ) : ( K  X.  B ) --> ( ran  .x.  u.  {
(/) } )  /\  ( K  X.  B )  e. 
_V  /\  ( ran  .x. 
u.  { (/) } )  e.  _V )  -> 
( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )  e.  _V )
3523, 28, 33, 34mp3an 1424 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) )  e.  _V
3615, 16, 35fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) ) )
37 fvprc 6185 . . . . 5  |-  ( -.  W  e.  _V  ->  ( .sf `  W
)  =  (/) )
38 mpt20 6725 . . . . 5  |-  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) )  =  (/)
3937, 38syl6eqr 2674 . . . 4  |-  ( -.  W  e.  _V  ->  ( .sf `  W
)  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
40 fvprc 6185 . . . . . . . . 9  |-  ( -.  W  e.  _V  ->  (Scalar `  W )  =  (/) )
413, 40syl5eq 2668 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  F  =  (/) )
4241fveq2d 6195 . . . . . . 7  |-  ( -.  W  e.  _V  ->  (
Base `  F )  =  ( Base `  (/) ) )
436, 42syl5eq 2668 . . . . . 6  |-  ( -.  W  e.  _V  ->  K  =  ( Base `  (/) ) )
44 base0 15912 . . . . . 6  |-  (/)  =  (
Base `  (/) )
4543, 44syl6eqr 2674 . . . . 5  |-  ( -.  W  e.  _V  ->  K  =  (/) )
46 eqid 2622 . . . . 5  |-  B  =  B
47 mpt2eq12 6715 . . . . 5  |-  ( ( K  =  (/)  /\  B  =  B )  ->  (
x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
4845, 46, 47sylancl 694 . . . 4  |-  ( -.  W  e.  _V  ->  ( x  e.  K , 
y  e.  B  |->  ( x  .x.  y ) )  =  ( x  e.  (/) ,  y  e.  B  |->  ( x  .x.  y ) ) )
4939, 48eqtr4d 2659 . . 3  |-  ( -.  W  e.  _V  ->  ( .sf `  W
)  =  ( x  e.  K ,  y  e.  B  |->  ( x 
.x.  y ) ) )
5036, 49pm2.61i 176 . 2  |-  ( .sf `  W )  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y ) )
511, 50eqtri 2644 1  |-  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x  .x.  y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   (/)c0 3915   {csn 4177   <.cop 4183    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   .sfcscaf 18864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-scaf 18866
This theorem is referenced by:  scafval  18882  scafeq  18883  scaffn  18884  lmodscaf  18885  rlmscaf  19208
  Copyright terms: Public domain W3C validator