| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scaffval | Structured version Visualization version Unicode version | ||
| Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| scaffval.b |
|
| scaffval.f |
|
| scaffval.k |
|
| scaffval.a |
|
| scaffval.s |
|
| Ref | Expression |
|---|---|
| scaffval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scaffval.a |
. 2
| |
| 2 | fveq2 6191 |
. . . . . . . 8
| |
| 3 | scaffval.f |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6eqr 2674 |
. . . . . . 7
|
| 5 | 4 | fveq2d 6195 |
. . . . . 6
|
| 6 | scaffval.k |
. . . . . 6
| |
| 7 | 5, 6 | syl6eqr 2674 |
. . . . 5
|
| 8 | fveq2 6191 |
. . . . . 6
| |
| 9 | scaffval.b |
. . . . . 6
| |
| 10 | 8, 9 | syl6eqr 2674 |
. . . . 5
|
| 11 | fveq2 6191 |
. . . . . . 7
| |
| 12 | scaffval.s |
. . . . . . 7
| |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . 6
|
| 14 | 13 | oveqd 6667 |
. . . . 5
|
| 15 | 7, 10, 14 | mpt2eq123dv 6717 |
. . . 4
|
| 16 | df-scaf 18866 |
. . . 4
| |
| 17 | df-ov 6653 |
. . . . . . . 8
| |
| 18 | fvrn0 6216 |
. . . . . . . 8
| |
| 19 | 17, 18 | eqeltri 2697 |
. . . . . . 7
|
| 20 | 19 | rgen2w 2925 |
. . . . . 6
|
| 21 | eqid 2622 |
. . . . . . 7
| |
| 22 | 21 | fmpt2 7237 |
. . . . . 6
|
| 23 | 20, 22 | mpbi 220 |
. . . . 5
|
| 24 | fvex 6201 |
. . . . . . 7
| |
| 25 | 6, 24 | eqeltri 2697 |
. . . . . 6
|
| 26 | fvex 6201 |
. . . . . . 7
| |
| 27 | 9, 26 | eqeltri 2697 |
. . . . . 6
|
| 28 | 25, 27 | xpex 6962 |
. . . . 5
|
| 29 | fvex 6201 |
. . . . . . . 8
| |
| 30 | 12, 29 | eqeltri 2697 |
. . . . . . 7
|
| 31 | 30 | rnex 7100 |
. . . . . 6
|
| 32 | p0ex 4853 |
. . . . . 6
| |
| 33 | 31, 32 | unex 6956 |
. . . . 5
|
| 34 | fex2 7121 |
. . . . 5
| |
| 35 | 23, 28, 33, 34 | mp3an 1424 |
. . . 4
|
| 36 | 15, 16, 35 | fvmpt 6282 |
. . 3
|
| 37 | fvprc 6185 |
. . . . 5
| |
| 38 | mpt20 6725 |
. . . . 5
| |
| 39 | 37, 38 | syl6eqr 2674 |
. . . 4
|
| 40 | fvprc 6185 |
. . . . . . . . 9
| |
| 41 | 3, 40 | syl5eq 2668 |
. . . . . . . 8
|
| 42 | 41 | fveq2d 6195 |
. . . . . . 7
|
| 43 | 6, 42 | syl5eq 2668 |
. . . . . 6
|
| 44 | base0 15912 |
. . . . . 6
| |
| 45 | 43, 44 | syl6eqr 2674 |
. . . . 5
|
| 46 | eqid 2622 |
. . . . 5
| |
| 47 | mpt2eq12 6715 |
. . . . 5
| |
| 48 | 45, 46, 47 | sylancl 694 |
. . . 4
|
| 49 | 39, 48 | eqtr4d 2659 |
. . 3
|
| 50 | 36, 49 | pm2.61i 176 |
. 2
|
| 51 | 1, 50 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-slot 15861 df-base 15863 df-scaf 18866 |
| This theorem is referenced by: scafval 18882 scafeq 18883 scaffn 18884 lmodscaf 18885 rlmscaf 19208 |
| Copyright terms: Public domain | W3C validator |