![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcinv | Structured version Visualization version GIF version |
Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
oppcinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
oppcinv.t | ⊢ 𝐽 = (Inv‘𝑂) |
Ref | Expression |
---|---|
oppcinv | ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3805 | . . 3 ⊢ ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) | |
2 | oppcsect.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
3 | oppcsect.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
4 | oppcsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | oppcsect.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | oppcsect.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | eqid 2622 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
8 | eqid 2622 | . . . . . . 7 ⊢ (Sect‘𝑂) = (Sect‘𝑂) | |
9 | 2, 3, 4, 5, 6, 7, 8 | oppcsect2 16439 | . . . . . 6 ⊢ (𝜑 → (𝑌(Sect‘𝑂)𝑋) = ◡(𝑌(Sect‘𝐶)𝑋)) |
10 | 9 | cnveqd 5298 | . . . . 5 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = ◡◡(𝑌(Sect‘𝐶)𝑋)) |
11 | eqid 2622 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
12 | eqid 2622 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
13 | eqid 2622 | . . . . . . . 8 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
14 | 2, 11, 12, 13, 7, 4, 5, 6 | sectss 16412 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
15 | relxp 5227 | . . . . . . 7 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
16 | relss 5206 | . . . . . . 7 ⊢ ((𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌(Sect‘𝐶)𝑋))) | |
17 | 14, 15, 16 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → Rel (𝑌(Sect‘𝐶)𝑋)) |
18 | dfrel2 5583 | . . . . . 6 ⊢ (Rel (𝑌(Sect‘𝐶)𝑋) ↔ ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) | |
19 | 17, 18 | sylib 208 | . . . . 5 ⊢ (𝜑 → ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
20 | 10, 19 | eqtrd 2656 | . . . 4 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
21 | 2, 3, 4, 6, 5, 7, 8 | oppcsect2 16439 | . . . 4 ⊢ (𝜑 → (𝑋(Sect‘𝑂)𝑌) = ◡(𝑋(Sect‘𝐶)𝑌)) |
22 | 20, 21 | ineq12d 3815 | . . 3 ⊢ (𝜑 → (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
23 | 1, 22 | syl5eq 2668 | . 2 ⊢ (𝜑 → ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
24 | 3, 2 | oppcbas 16378 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
25 | oppcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝑂) | |
26 | 3 | oppccat 16382 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
27 | 4, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
28 | 24, 25, 27, 6, 5, 8 | invfval 16419 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) = ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋))) |
29 | oppcinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
30 | 2, 29, 4, 5, 6, 7 | invfval 16419 | . 2 ⊢ (𝜑 → (𝑌𝐼𝑋) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
31 | 23, 28, 30 | 3eqtr4d 2666 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∩ cin 3573 ⊆ wss 3574 × cxp 5112 ◡ccnv 5113 Rel wrel 5119 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 Idccid 16326 oppCatcoppc 16371 Sectcsect 16404 Invcinv 16405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-oppc 16372 df-sect 16407 df-inv 16408 |
This theorem is referenced by: oppciso 16441 episect 16445 |
Copyright terms: Public domain | W3C validator |