Proof of Theorem setsfun
Step | Hyp | Ref
| Expression |
1 | | funres 5929 |
. . . . 5
⊢ (Fun
𝐺 → Fun (𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉}))) |
2 | 1 | adantl 482 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺) → Fun (𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉}))) |
3 | 2 | adantr 481 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉}))) |
4 | | funsng 5937 |
. . . 4
⊢ ((𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊) → Fun {〈𝐼, 𝐸〉}) |
5 | 4 | adantl 482 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun {〈𝐼, 𝐸〉}) |
6 | | dmres 5419 |
. . . . . 6
⊢ dom
(𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) = ((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) |
7 | 6 | ineq1i 3810 |
. . . . 5
⊢ (dom
(𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = (((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) ∩ dom {〈𝐼, 𝐸〉}) |
8 | | in32 3825 |
. . . . . 6
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) ∩ dom {〈𝐼, 𝐸〉}) = (((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) |
9 | | incom 3805 |
. . . . . . . 8
⊢ ((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) = (dom {〈𝐼, 𝐸〉} ∩ (V ∖ dom {〈𝐼, 𝐸〉})) |
10 | | disjdif 4040 |
. . . . . . . 8
⊢ (dom
{〈𝐼, 𝐸〉} ∩ (V ∖ dom {〈𝐼, 𝐸〉})) = ∅ |
11 | 9, 10 | eqtri 2644 |
. . . . . . 7
⊢ ((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) = ∅ |
12 | 11 | ineq1i 3810 |
. . . . . 6
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) = (∅ ∩ dom 𝐺) |
13 | | 0in 3969 |
. . . . . 6
⊢ (∅
∩ dom 𝐺) =
∅ |
14 | 8, 12, 13 | 3eqtri 2648 |
. . . . 5
⊢ (((V
∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝐺) ∩ dom {〈𝐼, 𝐸〉}) = ∅ |
15 | 7, 14 | eqtri 2644 |
. . . 4
⊢ (dom
(𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅ |
16 | 15 | a1i 11 |
. . 3
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (dom (𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅) |
17 | | funun 5932 |
. . 3
⊢ (((Fun
(𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∧ Fun {〈𝐼, 𝐸〉}) ∧ (dom (𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∩ dom {〈𝐼, 𝐸〉}) = ∅) → Fun ((𝐺 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
18 | 3, 5, 16, 17 | syl21anc 1325 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
19 | | opex 4932 |
. . . . . 6
⊢
〈𝐼, 𝐸〉 ∈ V |
20 | 19 | a1i 11 |
. . . . 5
⊢ (Fun
𝐺 → 〈𝐼, 𝐸〉 ∈ V) |
21 | | setsvalg 15887 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 〈𝐼, 𝐸〉 ∈ V) → (𝐺 sSet 〈𝐼, 𝐸〉) = ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
22 | 20, 21 | sylan2 491 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺) → (𝐺 sSet 〈𝐼, 𝐸〉) = ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
23 | 22 | funeqd 5910 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ Fun 𝐺) → (Fun (𝐺 sSet 〈𝐼, 𝐸〉) ↔ Fun ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}))) |
24 | 23 | adantr 481 |
. 2
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → (Fun (𝐺 sSet 〈𝐼, 𝐸〉) ↔ Fun ((𝐺 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}))) |
25 | 18, 24 | mpbird 247 |
1
⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (𝐺 sSet 〈𝐼, 𝐸〉)) |