HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   GIF version

Theorem shintcli 28188
Description: Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1 (𝐴S𝐴 ≠ ∅)
Assertion
Ref Expression
shintcli 𝐴S

Proof of Theorem shintcli
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5 (𝐴S𝐴 ≠ ∅)
21simpri 478 . . . 4 𝐴 ≠ ∅
3 n0 3931 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
4 intss1 4492 . . . . . . 7 (𝑧𝐴 𝐴𝑧)
51simpli 474 . . . . . . . . 9 𝐴S
65sseli 3599 . . . . . . . 8 (𝑧𝐴𝑧S )
7 shss 28067 . . . . . . . 8 (𝑧S𝑧 ⊆ ℋ)
86, 7syl 17 . . . . . . 7 (𝑧𝐴𝑧 ⊆ ℋ)
94, 8sstrd 3613 . . . . . 6 (𝑧𝐴 𝐴 ⊆ ℋ)
109exlimiv 1858 . . . . 5 (∃𝑧 𝑧𝐴 𝐴 ⊆ ℋ)
113, 10sylbi 207 . . . 4 (𝐴 ≠ ∅ → 𝐴 ⊆ ℋ)
122, 11ax-mp 5 . . 3 𝐴 ⊆ ℋ
13 ax-hv0cl 27860 . . . . . 6 0 ∈ ℋ
1413elexi 3213 . . . . 5 0 ∈ V
1514elint2 4482 . . . 4 (0 𝐴 ↔ ∀𝑧𝐴 0𝑧)
16 sh0 28073 . . . . 5 (𝑧S → 0𝑧)
176, 16syl 17 . . . 4 (𝑧𝐴 → 0𝑧)
1815, 17mprgbir 2927 . . 3 0 𝐴
1912, 18pm3.2i 471 . 2 ( 𝐴 ⊆ ℋ ∧ 0 𝐴)
20 elinti 4485 . . . . . . . . 9 (𝑥 𝐴 → (𝑧𝐴𝑥𝑧))
2120com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑥 𝐴𝑥𝑧))
22 elinti 4485 . . . . . . . . 9 (𝑦 𝐴 → (𝑧𝐴𝑦𝑧))
2322com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑦 𝐴𝑦𝑧))
24 shaddcl 28074 . . . . . . . . . 10 ((𝑧S𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
256, 24syl3an1 1359 . . . . . . . . 9 ((𝑧𝐴𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
26253expib 1268 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧))
2721, 23, 26syl2and 500 . . . . . . 7 (𝑧𝐴 → ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝑧))
2827com12 32 . . . . . 6 ((𝑥 𝐴𝑦 𝐴) → (𝑧𝐴 → (𝑥 + 𝑦) ∈ 𝑧))
2928ralrimiv 2965 . . . . 5 ((𝑥 𝐴𝑦 𝐴) → ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
30 ovex 6678 . . . . . 6 (𝑥 + 𝑦) ∈ V
3130elint2 4482 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
3229, 31sylibr 224 . . . 4 ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3332rgen2a 2977 . . 3 𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴
34 shmulcl 28075 . . . . . . . . . 10 ((𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
356, 34syl3an1 1359 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
36353expib 1268 . . . . . . . 8 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧))
3723, 36sylan2d 499 . . . . . . 7 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝑧))
3837com12 32 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑧𝐴 → (𝑥 · 𝑦) ∈ 𝑧))
3938ralrimiv 2965 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
40 ovex 6678 . . . . . 6 (𝑥 · 𝑦) ∈ V
4140elint2 4482 . . . . 5 ((𝑥 · 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
4239, 41sylibr 224 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
4342rgen2 2975 . . 3 𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴
4433, 43pm3.2i 471 . 2 (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)
45 issh2 28066 . 2 ( 𝐴S ↔ (( 𝐴 ⊆ ℋ ∧ 0 𝐴) ∧ (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)))
4619, 44, 45mpbir2an 955 1 𝐴S
Colors of variables: wff setvar class
Syntax hints:  wa 384  wex 1704  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915   cint 4475  (class class class)co 6650  cc 9934  chil 27776   + cva 27777   · csm 27778  0c0v 27781   S csh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-sh 28064
This theorem is referenced by:  shintcl  28189  chintcli  28190  shincli  28221
  Copyright terms: Public domain W3C validator