HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   Unicode version

Theorem shintcli 28188
Description: Closure of intersection of a nonempty subset of  SH. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1  |-  ( A 
C_  SH  /\  A  =/=  (/) )
Assertion
Ref Expression
shintcli  |-  |^| A  e.  SH

Proof of Theorem shintcli
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5  |-  ( A 
C_  SH  /\  A  =/=  (/) )
21simpri 478 . . . 4  |-  A  =/=  (/)
3 n0 3931 . . . . 5  |-  ( A  =/=  (/)  <->  E. z  z  e.  A )
4 intss1 4492 . . . . . . 7  |-  ( z  e.  A  ->  |^| A  C_  z )
51simpli 474 . . . . . . . . 9  |-  A  C_  SH
65sseli 3599 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  SH )
7 shss 28067 . . . . . . . 8  |-  ( z  e.  SH  ->  z  C_ 
~H )
86, 7syl 17 . . . . . . 7  |-  ( z  e.  A  ->  z  C_ 
~H )
94, 8sstrd 3613 . . . . . 6  |-  ( z  e.  A  ->  |^| A  C_ 
~H )
109exlimiv 1858 . . . . 5  |-  ( E. z  z  e.  A  ->  |^| A  C_  ~H )
113, 10sylbi 207 . . . 4  |-  ( A  =/=  (/)  ->  |^| A  C_  ~H )
122, 11ax-mp 5 . . 3  |-  |^| A  C_ 
~H
13 ax-hv0cl 27860 . . . . . 6  |-  0h  e.  ~H
1413elexi 3213 . . . . 5  |-  0h  e.  _V
1514elint2 4482 . . . 4  |-  ( 0h  e.  |^| A  <->  A. z  e.  A  0h  e.  z )
16 sh0 28073 . . . . 5  |-  ( z  e.  SH  ->  0h  e.  z )
176, 16syl 17 . . . 4  |-  ( z  e.  A  ->  0h  e.  z )
1815, 17mprgbir 2927 . . 3  |-  0h  e.  |^| A
1912, 18pm3.2i 471 . 2  |-  ( |^| A  C_  ~H  /\  0h  e.  |^| A )
20 elinti 4485 . . . . . . . . 9  |-  ( x  e.  |^| A  ->  (
z  e.  A  ->  x  e.  z )
)
2120com12 32 . . . . . . . 8  |-  ( z  e.  A  ->  (
x  e.  |^| A  ->  x  e.  z ) )
22 elinti 4485 . . . . . . . . 9  |-  ( y  e.  |^| A  ->  (
z  e.  A  -> 
y  e.  z ) )
2322com12 32 . . . . . . . 8  |-  ( z  e.  A  ->  (
y  e.  |^| A  ->  y  e.  z ) )
24 shaddcl 28074 . . . . . . . . . 10  |-  ( ( z  e.  SH  /\  x  e.  z  /\  y  e.  z )  ->  ( x  +h  y
)  e.  z )
256, 24syl3an1 1359 . . . . . . . . 9  |-  ( ( z  e.  A  /\  x  e.  z  /\  y  e.  z )  ->  ( x  +h  y
)  e.  z )
26253expib 1268 . . . . . . . 8  |-  ( z  e.  A  ->  (
( x  e.  z  /\  y  e.  z )  ->  ( x  +h  y )  e.  z ) )
2721, 23, 26syl2and 500 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  |^| A  /\  y  e.  |^| A )  ->  (
x  +h  y )  e.  z ) )
2827com12 32 . . . . . 6  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  ( z  e.  A  ->  ( x  +h  y )  e.  z ) )
2928ralrimiv 2965 . . . . 5  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  A. z  e.  A  ( x  +h  y )  e.  z )
30 ovex 6678 . . . . . 6  |-  ( x  +h  y )  e. 
_V
3130elint2 4482 . . . . 5  |-  ( ( x  +h  y )  e.  |^| A  <->  A. z  e.  A  ( x  +h  y )  e.  z )
3229, 31sylibr 224 . . . 4  |-  ( ( x  e.  |^| A  /\  y  e.  |^| A
)  ->  ( x  +h  y )  e.  |^| A )
3332rgen2a 2977 . . 3  |-  A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e. 
|^| A
34 shmulcl 28075 . . . . . . . . . 10  |-  ( ( z  e.  SH  /\  x  e.  CC  /\  y  e.  z )  ->  (
x  .h  y )  e.  z )
356, 34syl3an1 1359 . . . . . . . . 9  |-  ( ( z  e.  A  /\  x  e.  CC  /\  y  e.  z )  ->  (
x  .h  y )  e.  z )
36353expib 1268 . . . . . . . 8  |-  ( z  e.  A  ->  (
( x  e.  CC  /\  y  e.  z )  ->  ( x  .h  y )  e.  z ) )
3723, 36sylan2d 499 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  CC  /\  y  e.  |^| A
)  ->  ( x  .h  y )  e.  z ) )
3837com12 32 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  ( z  e.  A  ->  ( x  .h  y )  e.  z ) )
3938ralrimiv 2965 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  A. z  e.  A  ( x  .h  y
)  e.  z )
40 ovex 6678 . . . . . 6  |-  ( x  .h  y )  e. 
_V
4140elint2 4482 . . . . 5  |-  ( ( x  .h  y )  e.  |^| A  <->  A. z  e.  A  ( x  .h  y )  e.  z )
4239, 41sylibr 224 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  |^| A )  ->  ( x  .h  y )  e.  |^| A )
4342rgen2 2975 . . 3  |-  A. x  e.  CC  A. y  e. 
|^| A ( x  .h  y )  e. 
|^| A
4433, 43pm3.2i 471 . 2  |-  ( A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e.  |^| A  /\  A. x  e.  CC  A. y  e.  |^| A ( x  .h  y )  e. 
|^| A )
45 issh2 28066 . 2  |-  ( |^| A  e.  SH  <->  ( ( |^| A  C_  ~H  /\  0h  e.  |^| A )  /\  ( A. x  e.  |^| A A. y  e.  |^| A ( x  +h  y )  e.  |^| A  /\  A. x  e.  CC  A. y  e. 
|^| A ( x  .h  y )  e. 
|^| A ) ) )
4619, 44, 45mpbir2an 955 1  |-  |^| A  e.  SH
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   |^|cint 4475  (class class class)co 6650   CCcc 9934   ~Hchil 27776    +h cva 27777    .h csm 27778   0hc0v 27781   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-sh 28064
This theorem is referenced by:  shintcl  28189  chintcli  28190  shincli  28221
  Copyright terms: Public domain W3C validator