| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shintcli | Structured version Visualization version Unicode version | ||
| Description: Closure of intersection
of a nonempty subset of |
| Ref | Expression |
|---|---|
| shintcl.1 |
|
| Ref | Expression |
|---|---|
| shintcli |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shintcl.1 |
. . . . 5
| |
| 2 | 1 | simpri 478 |
. . . 4
|
| 3 | n0 3931 |
. . . . 5
| |
| 4 | intss1 4492 |
. . . . . . 7
| |
| 5 | 1 | simpli 474 |
. . . . . . . . 9
|
| 6 | 5 | sseli 3599 |
. . . . . . . 8
|
| 7 | shss 28067 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
|
| 9 | 4, 8 | sstrd 3613 |
. . . . . 6
|
| 10 | 9 | exlimiv 1858 |
. . . . 5
|
| 11 | 3, 10 | sylbi 207 |
. . . 4
|
| 12 | 2, 11 | ax-mp 5 |
. . 3
|
| 13 | ax-hv0cl 27860 |
. . . . . 6
| |
| 14 | 13 | elexi 3213 |
. . . . 5
|
| 15 | 14 | elint2 4482 |
. . . 4
|
| 16 | sh0 28073 |
. . . . 5
| |
| 17 | 6, 16 | syl 17 |
. . . 4
|
| 18 | 15, 17 | mprgbir 2927 |
. . 3
|
| 19 | 12, 18 | pm3.2i 471 |
. 2
|
| 20 | elinti 4485 |
. . . . . . . . 9
| |
| 21 | 20 | com12 32 |
. . . . . . . 8
|
| 22 | elinti 4485 |
. . . . . . . . 9
| |
| 23 | 22 | com12 32 |
. . . . . . . 8
|
| 24 | shaddcl 28074 |
. . . . . . . . . 10
| |
| 25 | 6, 24 | syl3an1 1359 |
. . . . . . . . 9
|
| 26 | 25 | 3expib 1268 |
. . . . . . . 8
|
| 27 | 21, 23, 26 | syl2and 500 |
. . . . . . 7
|
| 28 | 27 | com12 32 |
. . . . . 6
|
| 29 | 28 | ralrimiv 2965 |
. . . . 5
|
| 30 | ovex 6678 |
. . . . . 6
| |
| 31 | 30 | elint2 4482 |
. . . . 5
|
| 32 | 29, 31 | sylibr 224 |
. . . 4
|
| 33 | 32 | rgen2a 2977 |
. . 3
|
| 34 | shmulcl 28075 |
. . . . . . . . . 10
| |
| 35 | 6, 34 | syl3an1 1359 |
. . . . . . . . 9
|
| 36 | 35 | 3expib 1268 |
. . . . . . . 8
|
| 37 | 23, 36 | sylan2d 499 |
. . . . . . 7
|
| 38 | 37 | com12 32 |
. . . . . 6
|
| 39 | 38 | ralrimiv 2965 |
. . . . 5
|
| 40 | ovex 6678 |
. . . . . 6
| |
| 41 | 40 | elint2 4482 |
. . . . 5
|
| 42 | 39, 41 | sylibr 224 |
. . . 4
|
| 43 | 42 | rgen2 2975 |
. . 3
|
| 44 | 33, 43 | pm3.2i 471 |
. 2
|
| 45 | issh2 28066 |
. 2
| |
| 46 | 19, 44, 45 | mpbir2an 955 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-hilex 27856 ax-hfvadd 27857 ax-hv0cl 27860 ax-hfvmul 27862 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-sh 28064 |
| This theorem is referenced by: shintcl 28189 chintcli 28190 shincli 28221 |
| Copyright terms: Public domain | W3C validator |