![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shaddcl | Structured version Visualization version GIF version |
Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shaddcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh2 28066 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
2 | 1 | simprbi 480 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
3 | 2 | simpld 475 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻) |
4 | oveq1 6657 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +ℎ 𝑦) = (𝐴 +ℎ 𝑦)) | |
5 | 4 | eleq1d 2686 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝑦) ∈ 𝐻)) |
6 | oveq2 6658 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 +ℎ 𝑦) = (𝐴 +ℎ 𝐵)) | |
7 | 6 | eleq1d 2686 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 +ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
8 | 5, 7 | rspc2v 3322 | . . 3 ⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻)) |
10 | 9 | 3impib 1262 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → (𝐴 +ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 (class class class)co 6650 ℂcc 9934 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 0ℎc0v 27781 Sℋ csh 27785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-hilex 27856 ax-hfvadd 27857 ax-hfvmul 27862 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-sh 28064 |
This theorem is referenced by: shsubcl 28077 hhssabloilem 28118 hhssnv 28121 shscli 28176 shintcli 28188 shsleji 28229 shsidmi 28243 pjhthlem1 28250 spanuni 28403 spanunsni 28438 sumspansn 28508 pjaddii 28534 imaelshi 28917 |
Copyright terms: Public domain | W3C validator |