![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1lr | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 792 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1082 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: lspsolvlem 19142 dmatcrng 20308 scmatcrng 20327 1marepvsma1 20389 mdetunilem7 20424 mat2pmatghm 20535 pmatcollpwscmatlem2 20595 mp2pm2mplem4 20614 ax5seg 25818 clwwnisshclwwsn 26930 measinblem 30283 btwnconn1lem13 32206 athgt 34742 llnle 34804 lplnle 34826 lhpexle1 35294 lhpat3 35332 tendoicl 36084 cdlemk55b 36248 pellex 37399 ssfiunibd 39523 mullimc 39848 mullimcf 39855 icccncfext 40100 etransclem32 40483 |
Copyright terms: Public domain | W3C validator |