MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp1lr Structured version   Visualization version   Unicode version

Theorem simp1lr 1125
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1lr  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )

Proof of Theorem simp1lr
StepHypRef Expression
1 simplr 792 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ps )
213ad2ant1 1082 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th  /\  ta )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  lspsolvlem  19142  dmatcrng  20308  scmatcrng  20327  1marepvsma1  20389  mdetunilem7  20424  mat2pmatghm  20535  pmatcollpwscmatlem2  20595  mp2pm2mplem4  20614  ax5seg  25818  clwwnisshclwwsn  26930  measinblem  30283  btwnconn1lem13  32206  athgt  34742  llnle  34804  lplnle  34826  lhpexle1  35294  lhpat3  35332  tendoicl  36084  cdlemk55b  36248  pellex  37399  ssfiunibd  39523  mullimc  39848  mullimcf  39855  icccncfext  40100  etransclem32  40483
  Copyright terms: Public domain W3C validator