MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsolvlem Structured version   Visualization version   GIF version

Theorem lspsolvlem 19142
Description: Lemma for lspsolv 19143. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lspsolv.v 𝑉 = (Base‘𝑊)
lspsolv.s 𝑆 = (LSubSp‘𝑊)
lspsolv.n 𝑁 = (LSpan‘𝑊)
lspsolv.f 𝐹 = (Scalar‘𝑊)
lspsolv.b 𝐵 = (Base‘𝐹)
lspsolv.p + = (+g𝑊)
lspsolv.t · = ( ·𝑠𝑊)
lspsolv.q 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
lspsolv.w (𝜑𝑊 ∈ LMod)
lspsolv.ss (𝜑𝐴𝑉)
lspsolv.y (𝜑𝑌𝑉)
lspsolv.x (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
Assertion
Ref Expression
lspsolvlem (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Distinct variable groups:   𝑧,𝑟,𝐴   𝐵,𝑟,𝑧   𝑁,𝑟,𝑧   𝜑,𝑧   𝐹,𝑟   𝑆,𝑟   𝑉,𝑟,𝑧   𝑊,𝑟,𝑧   + ,𝑟,𝑧   · ,𝑟,𝑧   𝑋,𝑟,𝑧   𝑌,𝑟,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝑄(𝑧,𝑟)   𝑆(𝑧)   𝐹(𝑧)

Proof of Theorem lspsolvlem
Dummy variables 𝑠 𝑡 𝑥 𝑦 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsolv.w . . . . 5 (𝜑𝑊 ∈ LMod)
2 lspsolv.q . . . . . . 7 𝑄 = {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)}
3 ssrab2 3687 . . . . . . 7 {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)} ⊆ 𝑉
42, 3eqsstri 3635 . . . . . 6 𝑄𝑉
54a1i 11 . . . . 5 (𝜑𝑄𝑉)
6 lspsolv.ss . . . . . . . 8 (𝜑𝐴𝑉)
71adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑊 ∈ LMod)
8 lspsolv.f . . . . . . . . . . 11 𝐹 = (Scalar‘𝑊)
9 lspsolv.b . . . . . . . . . . 11 𝐵 = (Base‘𝐹)
10 eqid 2622 . . . . . . . . . . 11 (0g𝐹) = (0g𝐹)
118, 9, 10lmod0cl 18889 . . . . . . . . . 10 (𝑊 ∈ LMod → (0g𝐹) ∈ 𝐵)
127, 11syl 17 . . . . . . . . 9 ((𝜑𝑧𝐴) → (0g𝐹) ∈ 𝐵)
13 lspsolv.y . . . . . . . . . . . . . 14 (𝜑𝑌𝑉)
14 lspsolv.v . . . . . . . . . . . . . . 15 𝑉 = (Base‘𝑊)
15 lspsolv.t . . . . . . . . . . . . . . 15 · = ( ·𝑠𝑊)
16 eqid 2622 . . . . . . . . . . . . . . 15 (0g𝑊) = (0g𝑊)
1714, 8, 15, 10, 16lmod0vs 18896 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g𝐹) · 𝑌) = (0g𝑊))
181, 13, 17syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → ((0g𝐹) · 𝑌) = (0g𝑊))
1918adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → ((0g𝐹) · 𝑌) = (0g𝑊))
2019oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = (𝑧 + (0g𝑊)))
216sselda 3603 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧𝑉)
22 lspsolv.p . . . . . . . . . . . . 13 + = (+g𝑊)
2314, 22, 16lmod0vrid 18894 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑧𝑉) → (𝑧 + (0g𝑊)) = 𝑧)
247, 21, 23syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑧𝐴) → (𝑧 + (0g𝑊)) = 𝑧)
2520, 24eqtrd 2656 . . . . . . . . . 10 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) = 𝑧)
26 lspsolv.n . . . . . . . . . . . . 13 𝑁 = (LSpan‘𝑊)
2714, 26lspssid 18985 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → 𝐴 ⊆ (𝑁𝐴))
281, 6, 27syl2anc 693 . . . . . . . . . . 11 (𝜑𝐴 ⊆ (𝑁𝐴))
2928sselda 3603 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧 ∈ (𝑁𝐴))
3025, 29eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑧𝐴) → (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴))
31 oveq1 6657 . . . . . . . . . . . 12 (𝑟 = (0g𝐹) → (𝑟 · 𝑌) = ((0g𝐹) · 𝑌))
3231oveq2d 6666 . . . . . . . . . . 11 (𝑟 = (0g𝐹) → (𝑧 + (𝑟 · 𝑌)) = (𝑧 + ((0g𝐹) · 𝑌)))
3332eleq1d 2686 . . . . . . . . . 10 (𝑟 = (0g𝐹) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)))
3433rspcev 3309 . . . . . . . . 9 (((0g𝐹) ∈ 𝐵 ∧ (𝑧 + ((0g𝐹) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
3512, 30, 34syl2anc 693 . . . . . . . 8 ((𝜑𝑧𝐴) → ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
366, 35ssrabdv 3681 . . . . . . 7 (𝜑𝐴 ⊆ {𝑧𝑉 ∣ ∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)})
3736, 2syl6sseqr 3652 . . . . . 6 (𝜑𝐴𝑄)
388lmodfgrp 18872 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
391, 38syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ Grp)
40 eqid 2622 . . . . . . . . . . . 12 (1r𝐹) = (1r𝐹)
418, 9, 40lmod1cl 18890 . . . . . . . . . . 11 (𝑊 ∈ LMod → (1r𝐹) ∈ 𝐵)
421, 41syl 17 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ 𝐵)
43 eqid 2622 . . . . . . . . . . 11 (invg𝐹) = (invg𝐹)
449, 43grpinvcl 17467 . . . . . . . . . 10 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐵) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
4539, 42, 44syl2anc 693 . . . . . . . . 9 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐵)
46 eqid 2622 . . . . . . . . . . . . . 14 (invg𝑊) = (invg𝑊)
4714, 46, 8, 15, 40, 43lmodvneg1 18906 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
481, 13, 47syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) = ((invg𝑊)‘𝑌))
4948oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (𝑌 + ((invg𝑊)‘𝑌)))
50 lmodgrp 18870 . . . . . . . . . . . . 13 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
511, 50syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ Grp)
5214, 22, 16, 46grprinv 17469 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝑌𝑉) → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5351, 13, 52syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((invg𝑊)‘𝑌)) = (0g𝑊))
5449, 53eqtrd 2656 . . . . . . . . . 10 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (0g𝑊))
55 lspsolv.s . . . . . . . . . . . . 13 𝑆 = (LSubSp‘𝑊)
5614, 55, 26lspcl 18976 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐴𝑉) → (𝑁𝐴) ∈ 𝑆)
571, 6, 56syl2anc 693 . . . . . . . . . . 11 (𝜑 → (𝑁𝐴) ∈ 𝑆)
5816, 55lss0cl 18947 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝐴) ∈ 𝑆) → (0g𝑊) ∈ (𝑁𝐴))
591, 57, 58syl2anc 693 . . . . . . . . . 10 (𝜑 → (0g𝑊) ∈ (𝑁𝐴))
6054, 59eqeltrd 2701 . . . . . . . . 9 (𝜑 → (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴))
61 oveq1 6657 . . . . . . . . . . . 12 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑟 · 𝑌) = (((invg𝐹)‘(1r𝐹)) · 𝑌))
6261oveq2d 6666 . . . . . . . . . . 11 (𝑟 = ((invg𝐹)‘(1r𝐹)) → (𝑌 + (𝑟 · 𝑌)) = (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)))
6362eleq1d 2686 . . . . . . . . . 10 (𝑟 = ((invg𝐹)‘(1r𝐹)) → ((𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)))
6463rspcev 3309 . . . . . . . . 9 ((((invg𝐹)‘(1r𝐹)) ∈ 𝐵 ∧ (𝑌 + (((invg𝐹)‘(1r𝐹)) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
6545, 60, 64syl2anc 693 . . . . . . . 8 (𝜑 → ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
66 oveq1 6657 . . . . . . . . . . 11 (𝑧 = 𝑌 → (𝑧 + (𝑟 · 𝑌)) = (𝑌 + (𝑟 · 𝑌)))
6766eleq1d 2686 . . . . . . . . . 10 (𝑧 = 𝑌 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6867rexbidv 3052 . . . . . . . . 9 (𝑧 = 𝑌 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
6968, 2elrab2 3366 . . . . . . . 8 (𝑌𝑄 ↔ (𝑌𝑉 ∧ ∃𝑟𝐵 (𝑌 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
7013, 65, 69sylanbrc 698 . . . . . . 7 (𝜑𝑌𝑄)
7170snssd 4340 . . . . . 6 (𝜑 → {𝑌} ⊆ 𝑄)
7237, 71unssd 3789 . . . . 5 (𝜑 → (𝐴 ∪ {𝑌}) ⊆ 𝑄)
7314, 26lspss 18984 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑉 ∧ (𝐴 ∪ {𝑌}) ⊆ 𝑄) → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
741, 5, 72, 73syl3anc 1326 . . . 4 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ (𝑁𝑄))
758a1i 11 . . . . . 6 (𝜑𝐹 = (Scalar‘𝑊))
769a1i 11 . . . . . 6 (𝜑𝐵 = (Base‘𝐹))
7714a1i 11 . . . . . 6 (𝜑𝑉 = (Base‘𝑊))
7822a1i 11 . . . . . 6 (𝜑+ = (+g𝑊))
7915a1i 11 . . . . . 6 (𝜑· = ( ·𝑠𝑊))
8055a1i 11 . . . . . 6 (𝜑𝑆 = (LSubSp‘𝑊))
81 ne0i 3921 . . . . . . 7 (𝑌𝑄𝑄 ≠ ∅)
8270, 81syl 17 . . . . . 6 (𝜑𝑄 ≠ ∅)
83 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → (𝑧 + (𝑟 · 𝑌)) = (𝑥 + (𝑟 · 𝑌)))
8483eleq1d 2686 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
8584rexbidv 3052 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
86 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (𝑟 · 𝑌) = (𝑠 · 𝑌))
8786oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑟 = 𝑠 → (𝑥 + (𝑟 · 𝑌)) = (𝑥 + (𝑠 · 𝑌)))
8887eleq1d 2686 . . . . . . . . . . . . . 14 (𝑟 = 𝑠 → ((𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
8988cbvrexv 3172 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑥 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
9085, 89syl6bb 276 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
9190, 2elrab2 3366 . . . . . . . . . . 11 (𝑥𝑄 ↔ (𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)))
92 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 + (𝑟 · 𝑌)) = (𝑦 + (𝑟 · 𝑌)))
9392eleq1d 2686 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
9493rexbidv 3052 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
95 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑡 → (𝑟 · 𝑌) = (𝑡 · 𝑌))
9695oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑟 = 𝑡 → (𝑦 + (𝑟 · 𝑌)) = (𝑦 + (𝑡 · 𝑌)))
9796eleq1d 2686 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → ((𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
9897cbvrexv 3172 . . . . . . . . . . . . 13 (∃𝑟𝐵 (𝑦 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
9994, 98syl6bb 276 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
10099, 2elrab2 3366 . . . . . . . . . . 11 (𝑦𝑄 ↔ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
10191, 100anbi12i 733 . . . . . . . . . 10 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
102 an4 865 . . . . . . . . . 10 (((𝑥𝑉 ∧ ∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴)) ∧ (𝑦𝑉 ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
103101, 102bitri 264 . . . . . . . . 9 ((𝑥𝑄𝑦𝑄) ↔ ((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))))
104 reeanv 3107 . . . . . . . . . . 11 (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) ↔ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)))
105 simp1ll 1124 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝜑)
106105, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑊 ∈ LMod)
107 simp1lr 1125 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑎𝐵)
108 simp1rl 1126 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑥𝑉)
10914, 8, 15, 9lmodvscl 18880 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑥𝑉) → (𝑎 · 𝑥) ∈ 𝑉)
110106, 107, 108, 109syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · 𝑥) ∈ 𝑉)
111 simp1rr 1127 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑦𝑉)
11214, 22lmodvacl 18877 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
113106, 110, 111, 112syl3anc 1326 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑉)
114 simp2l 1087 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑠𝐵)
115 eqid 2622 . . . . . . . . . . . . . . . . . 18 (.r𝐹) = (.r𝐹)
1168, 9, 115lmodmcl 18875 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑎𝐵𝑠𝐵) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
117106, 107, 114, 116syl3anc 1326 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎(.r𝐹)𝑠) ∈ 𝐵)
118 simp2r 1088 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑡𝐵)
119 eqid 2622 . . . . . . . . . . . . . . . . 17 (+g𝐹) = (+g𝐹)
1208, 9, 119lmodacl 18874 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ (𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
121106, 117, 118, 120syl3anc 1326 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵)
122105, 13syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → 𝑌𝑉)
12314, 8, 15, 9lmodvscl 18880 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝑠𝐵𝑌𝑉) → (𝑠 · 𝑌) ∈ 𝑉)
124106, 114, 122, 123syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑠 · 𝑌) ∈ 𝑉)
12514, 8, 15, 9lmodvscl 18880 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑎𝐵 ∧ (𝑠 · 𝑌) ∈ 𝑉) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
126106, 107, 124, 125syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑠 · 𝑌)) ∈ 𝑉)
12714, 8, 15, 9lmodvscl 18880 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑡𝐵𝑌𝑉) → (𝑡 · 𝑌) ∈ 𝑉)
128106, 118, 122, 127syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑡 · 𝑌) ∈ 𝑉)
12914, 22lmod4 18913 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ ((𝑎 · 𝑥) ∈ 𝑉𝑦𝑉) ∧ ((𝑎 · (𝑠 · 𝑌)) ∈ 𝑉 ∧ (𝑡 · 𝑌) ∈ 𝑉)) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
130106, 110, 111, 126, 128, 129syl122anc 1335 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
13114, 22, 8, 15, 9, 119lmodvsdir 18887 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ ((𝑎(.r𝐹)𝑠) ∈ 𝐵𝑡𝐵𝑌𝑉)) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
132106, 117, 118, 122, 131syl13anc 1328 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)))
13314, 8, 15, 9, 115lmodvsass 18888 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑠𝐵𝑌𝑉)) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
134106, 107, 114, 122, 133syl13anc 1328 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎(.r𝐹)𝑠) · 𝑌) = (𝑎 · (𝑠 · 𝑌)))
135134oveq1d 6665 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠) · 𝑌) + (𝑡 · 𝑌)) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
136132, 135eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌) = ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌)))
137136oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + ((𝑎 · (𝑠 · 𝑌)) + (𝑡 · 𝑌))))
13814, 22, 8, 15, 9lmodvsdi 18886 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ (𝑎𝐵𝑥𝑉 ∧ (𝑠 · 𝑌) ∈ 𝑉)) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
139106, 107, 108, 124, 138syl13anc 1328 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑎 · (𝑥 + (𝑠 · 𝑌))) = ((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))))
140139oveq1d 6665 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) = (((𝑎 · 𝑥) + (𝑎 · (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
141130, 137, 1403eqtr4d 2666 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) = ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))))
142105, 57syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑁𝐴) ∈ 𝑆)
143 simp3l 1089 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴))
144 simp3r 1090 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))
1458, 9, 22, 15, 55lsscl 18943 . . . . . . . . . . . . . . . . 17 (((𝑁𝐴) ∈ 𝑆 ∧ (𝑎𝐵 ∧ (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
146142, 107, 143, 144, 145syl13anc 1328 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · (𝑥 + (𝑠 · 𝑌))) + (𝑦 + (𝑡 · 𝑌))) ∈ (𝑁𝐴))
147141, 146eqeltrd 2701 . . . . . . . . . . . . . . 15 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴))
148 oveq1 6657 . . . . . . . . . . . . . . . . . 18 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (𝑟 · 𝑌) = (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌))
149148oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)))
150149eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑟 = ((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) → ((((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)))
151150rspcev 3309 . . . . . . . . . . . . . . 15 ((((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) ∈ 𝐵 ∧ (((𝑎 · 𝑥) + 𝑦) + (((𝑎(.r𝐹)𝑠)(+g𝐹)𝑡) · 𝑌)) ∈ (𝑁𝐴)) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
152121, 147, 151syl2anc 693 . . . . . . . . . . . . . 14 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
153 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (𝑧 + (𝑟 · 𝑌)) = (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)))
154153eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
155154rexbidv 3052 . . . . . . . . . . . . . . 15 (𝑧 = ((𝑎 · 𝑥) + 𝑦) → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
156155, 2elrab2 3366 . . . . . . . . . . . . . 14 (((𝑎 · 𝑥) + 𝑦) ∈ 𝑄 ↔ (((𝑎 · 𝑥) + 𝑦) ∈ 𝑉 ∧ ∃𝑟𝐵 (((𝑎 · 𝑥) + 𝑦) + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
157113, 152, 156sylanbrc 698 . . . . . . . . . . . . 13 ((((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) ∧ (𝑠𝐵𝑡𝐵) ∧ ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
1581573exp 1264 . . . . . . . . . . . 12 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((𝑠𝐵𝑡𝐵) → (((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)))
159158rexlimdvv 3037 . . . . . . . . . . 11 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑠𝐵𝑡𝐵 ((𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
160104, 159syl5bir 233 . . . . . . . . . 10 (((𝜑𝑎𝐵) ∧ (𝑥𝑉𝑦𝑉)) → ((∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
161160expimpd 629 . . . . . . . . 9 ((𝜑𝑎𝐵) → (((𝑥𝑉𝑦𝑉) ∧ (∃𝑠𝐵 (𝑥 + (𝑠 · 𝑌)) ∈ (𝑁𝐴) ∧ ∃𝑡𝐵 (𝑦 + (𝑡 · 𝑌)) ∈ (𝑁𝐴))) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
162103, 161syl5bi 232 . . . . . . . 8 ((𝜑𝑎𝐵) → ((𝑥𝑄𝑦𝑄) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))
163162exp4b 632 . . . . . . 7 (𝜑 → (𝑎𝐵 → (𝑥𝑄 → (𝑦𝑄 → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄))))
1641633imp2 1282 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑥𝑄𝑦𝑄)) → ((𝑎 · 𝑥) + 𝑦) ∈ 𝑄)
16575, 76, 77, 78, 79, 80, 5, 82, 164islssd 18936 . . . . 5 (𝜑𝑄𝑆)
16655, 26lspid 18982 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑄𝑆) → (𝑁𝑄) = 𝑄)
1671, 165, 166syl2anc 693 . . . 4 (𝜑 → (𝑁𝑄) = 𝑄)
16874, 167sseqtrd 3641 . . 3 (𝜑 → (𝑁‘(𝐴 ∪ {𝑌})) ⊆ 𝑄)
169 lspsolv.x . . 3 (𝜑𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌})))
170168, 169sseldd 3604 . 2 (𝜑𝑋𝑄)
171 oveq1 6657 . . . . . 6 (𝑧 = 𝑋 → (𝑧 + (𝑟 · 𝑌)) = (𝑋 + (𝑟 · 𝑌)))
172171eleq1d 2686 . . . . 5 (𝑧 = 𝑋 → ((𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
173172rexbidv 3052 . . . 4 (𝑧 = 𝑋 → (∃𝑟𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁𝐴) ↔ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
174173, 2elrab2 3366 . . 3 (𝑋𝑄 ↔ (𝑋𝑉 ∧ ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴)))
175174simprbi 480 . 2 (𝑋𝑄 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
176170, 175syl 17 1 (𝜑 → ∃𝑟𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  cun 3572  wss 3574  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  1rcur 18501  LModclmod 18863  LSubSpclss 18932  LSpanclspn 18971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972
This theorem is referenced by:  lspsolv  19143
  Copyright terms: Public domain W3C validator