MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatghm Structured version   Visualization version   GIF version

Theorem mat2pmatghm 20535
Description: The transformation of matrices into polynomial matrices is an additive group homomorphism. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatghm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))

Proof of Theorem mat2pmatghm
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.b . 2 𝐵 = (Base‘𝐴)
2 mat2pmatbas0.h . 2 𝐻 = (Base‘𝐶)
3 eqid 2622 . 2 (+g𝐴) = (+g𝐴)
4 eqid 2622 . 2 (+g𝐶) = (+g𝐶)
5 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
65matgrp 20236 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
7 mat2pmatbas.p . . . 4 𝑃 = (Poly1𝑅)
8 mat2pmatbas.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
97, 8pmatring 20498 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
10 ringgrp 18552 . . 3 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
119, 10syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
12 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
1312, 5, 1, 7, 8, 2mat2pmatf 20533 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
14 eqid 2622 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
15 simpl 473 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
1615adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑁 ∈ Fin)
177ply1ring 19618 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1817ad2antlr 763 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ Ring)
19 simp1lr 1125 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
20 eqid 2622 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
21 simp2 1062 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
22 simp3 1063 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
23 simp1rl 1126 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑥𝐵)
245, 20, 1, 21, 22, 23matecld 20232 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
25 eqid 2622 . . . . . . . 8 (algSc‘𝑃) = (algSc‘𝑃)
267, 25, 20, 14ply1sclcl 19656 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑥𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
2719, 24, 26syl2anc 693 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ (Base‘𝑃))
288, 14, 2, 16, 18, 27matbas2d 20229 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻)
29 simp1rr 1127 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑦𝐵)
305, 20, 1, 21, 22, 29matecld 20232 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
317, 25, 20, 14ply1sclcl 19656 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
3219, 30, 31syl2anc 693 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ (Base‘𝑃))
338, 14, 2, 16, 18, 32matbas2d 20229 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻)
34 eqid 2622 . . . . . 6 (+g𝑃) = (+g𝑃)
358, 2, 4, 34matplusg2 20233 . . . . 5 (((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∈ 𝐻 ∧ (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) ∈ 𝐻) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘𝑓 (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
3628, 33, 35syl2anc 693 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘𝑓 (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
37 fvexd 6203 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑥𝑗)) ∈ V)
38 fvexd 6203 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖𝑦𝑗)) ∈ V)
39 eqidd 2623 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
40 eqidd 2623 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
4116, 16, 37, 38, 39, 40offval22 7253 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘𝑓 (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
42 simpr 477 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐵𝑦𝐵))
43423ad2ant1 1082 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑥𝐵𝑦𝐵))
44 3simpc 1060 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
45 eqid 2622 . . . . . . . . . . 11 (+g𝑅) = (+g𝑅)
465, 1, 3, 45matplusgcell 20239 . . . . . . . . . 10 (((𝑥𝐵𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)))
4743, 44, 46syl2anc 693 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)))
487ply1sca 19623 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
4948adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
5049fveq2d 6195 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝑅) = (+g‘(Scalar‘𝑃)))
5150oveqd 6667 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5251adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
53523ad2ant1 1082 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑥𝑗)(+g𝑅)(𝑖𝑦𝑗)) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5447, 53eqtrd 2656 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑥(+g𝐴)𝑦)𝑗) = ((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗)))
5554fveq2d 6195 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗)) = ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))))
56 eqid 2622 . . . . . . . . 9 (Scalar‘𝑃) = (Scalar‘𝑃)
57183ad2ant1 1082 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ Ring)
587ply1lmod 19622 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
5958ad2antlr 763 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃 ∈ LMod)
60593ad2ant1 1082 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ LMod)
6125, 56, 57, 60asclghm 19338 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
6249eqcomd 2628 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘𝑃) = 𝑅)
6362fveq2d 6195 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
6463eleq2d 2687 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
6564adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
66653ad2ant1 1082 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑥𝑗) ∈ (Base‘𝑅)))
6724, 66mpbird 247 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)))
6863eleq2d 2687 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
6968adantr 481 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
70693ad2ant1 1082 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)) ↔ (𝑖𝑦𝑗) ∈ (Base‘𝑅)))
7130, 70mpbird 247 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃)))
72 eqid 2622 . . . . . . . . 9 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
73 eqid 2622 . . . . . . . . 9 (+g‘(Scalar‘𝑃)) = (+g‘(Scalar‘𝑃))
7472, 73, 34ghmlin 17665 . . . . . . . 8 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ (𝑖𝑥𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑖𝑦𝑗) ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))))
7561, 67, 71, 74syl3anc 1326 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((algSc‘𝑃)‘((𝑖𝑥𝑗)(+g‘(Scalar‘𝑃))(𝑖𝑦𝑗))) = (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))))
7655, 75eqtr2d 2657 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗))) = ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗)))
7776mpt2eq3dva 6719 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ (((algSc‘𝑃)‘(𝑖𝑥𝑗))(+g𝑃)((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
7841, 77eqtrd 2656 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))) ∘𝑓 (+g𝑃)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
7936, 78eqtr2d 2657 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
80 simpl 473 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
815matring 20249 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
82 ringmnd 18556 . . . . . . . . 9 (𝐴 ∈ Ring → 𝐴 ∈ Mnd)
8381, 82syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Mnd)
8483anim1i 592 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)))
85 3anass 1042 . . . . . . 7 ((𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) ↔ (𝐴 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)))
8684, 85sylibr 224 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵))
871, 3mndcl 17301 . . . . . 6 ((𝐴 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐴)𝑦) ∈ 𝐵)
8886, 87syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐴)𝑦) ∈ 𝐵)
89 df-3an 1039 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵))
9080, 88, 89sylanbrc 698 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵))
9112, 5, 1, 7, 25mat2pmatval 20529 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(+g𝐴)𝑦) ∈ 𝐵) → (𝑇‘(𝑥(+g𝐴)𝑦)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
9290, 91syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(+g𝐴)𝑦)) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖(𝑥(+g𝐴)𝑦)𝑗))))
93 simpl 473 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
9493anim2i 593 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
95 df-3an 1039 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
9694, 95sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
9712, 5, 1, 7, 25mat2pmatval 20529 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
9896, 97syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗))))
99 simpr 477 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
10099anim2i 593 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
101 df-3an 1039 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
102100, 101sylibr 224 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
10312, 5, 1, 7, 25mat2pmatval 20529 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
104102, 103syl 17 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) = (𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
10598, 104oveq12d 6668 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥)(+g𝐶)(𝑇𝑦)) = ((𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑥𝑗)))(+g𝐶)(𝑖𝑁, 𝑗𝑁 ↦ ((algSc‘𝑃)‘(𝑖𝑦𝑗)))))
10679, 92, 1053eqtr4d 2666 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇‘(𝑥(+g𝐴)𝑦)) = ((𝑇𝑥)(+g𝐶)(𝑇𝑦)))
1071, 2, 3, 4, 6, 11, 13, 106isghmd 17669 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  Fincfn 7955  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944  Mndcmnd 17294  Grpcgrp 17422   GrpHom cghm 17657  Ringcrg 18547  LModclmod 18863  algSccascl 19311  Poly1cpl1 19547   Mat cmat 20213   matToPolyMat cmat2pmat 20509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-ascl 19314  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mat2pmat 20512
This theorem is referenced by:  mat2pmatrhm  20539  0mat2pmat  20541  m2cpmghm  20549  pm2mp  20630  cayhamlem4  20693
  Copyright terms: Public domain W3C validator