Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem32 Structured version   Visualization version   GIF version

Theorem etransclem32 40483
Description: This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem32.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem32.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem32.p (𝜑𝑃 ∈ ℕ)
etransclem32.m (𝜑𝑀 ∈ ℕ0)
etransclem32.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem32.n (𝜑𝑁 ∈ ℕ0)
etransclem32.ngt (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
etransclem32.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
Assertion
Ref Expression
etransclem32 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Distinct variable groups:   𝑗,𝐻,𝑥   𝑗,𝑀,𝑥   𝑗,𝑁,𝑥   𝑃,𝑗,𝑥   𝑆,𝑗,𝑥   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗)

Proof of Theorem etransclem32
Dummy variables 𝑘 𝐴 𝑐 𝑛 𝑑 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem32.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem32.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem32.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem32.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem32.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
6 etransclem32.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem32.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
8 etransclem11 40462 . . 3 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 40481 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))
10 simpr 477 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁))
118, 6etransclem12 40463 . . . . . . . . . . 11 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1211adantr 481 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1310, 12eleqtrd 2703 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
1413adantlr 751 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
15 nfv 1843 . . . . . . . . . . . . . 14 𝑘(𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
16 nfre1 3005 . . . . . . . . . . . . . . 15 𝑘𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1716nfn 1784 . . . . . . . . . . . . . 14 𝑘 ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
1815, 17nfan 1828 . . . . . . . . . . . . 13 𝑘((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
19 fzssre 39529 . . . . . . . . . . . . . . . . 17 (0...𝑁) ⊆ ℝ
20 rabid 3116 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
2120simplbi 476 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
22 elmapi 7879 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐:(0...𝑀)⟶(0...𝑁))
2423adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑐:(0...𝑀)⟶(0...𝑁))
2524ffvelrnda 6359 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2619, 25sseldi 3601 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
2726adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
28 nnm1nn0 11334 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
293, 28syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3029nn0red 11352 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑃 − 1) ∈ ℝ)
313nnred 11035 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℝ)
3230, 31ifcld 4131 . . . . . . . . . . . . . . . 16 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
3332ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
34 ralnex 2992 . . . . . . . . . . . . . . . . . 18 (∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ↔ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3534biimpri 218 . . . . . . . . . . . . . . . . 17 (¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∀𝑘 ∈ (0...𝑀) ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3635r19.21bi 2932 . . . . . . . . . . . . . . . 16 ((¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3736adantll 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → ¬ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
3827, 33, 37nltled 10187 . . . . . . . . . . . . . 14 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
3938ex 450 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑘 ∈ (0...𝑀) → (𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)))
4018, 39ralrimi 2957 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃))
41 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
4241cbvsumv 14426 . . . . . . . . . . . . . . 15 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
4320simprbi 480 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
4442, 43syl5reqr 2671 . . . . . . . . . . . . . 14 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
4544ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
46 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑘 = → (𝑐𝑘) = (𝑐))
4746cbvsumv 14426 . . . . . . . . . . . . . 14 Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ ∈ (0...𝑀)(𝑐)
48 fzfid 12772 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → (0...𝑀) ∈ Fin)
4924ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ (0...𝑁))
5019, 49sseldi 3601 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5150adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ∈ ℝ)
5230, 31ifcld 4131 . . . . . . . . . . . . . . . . 17 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
5352ad3antrrr 766 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
54 eqeq1 2626 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = → (𝑘 = 0 ↔ = 0))
5554ifbid 4108 . . . . . . . . . . . . . . . . . . 19 (𝑘 = → if(𝑘 = 0, (𝑃 − 1), 𝑃) = if( = 0, (𝑃 − 1), 𝑃))
5646, 55breq12d 4666 . . . . . . . . . . . . . . . . . 18 (𝑘 = → ((𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ↔ (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃)))
5756rspccva 3308 . . . . . . . . . . . . . . . . 17 ((∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5857adantll 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∧ ∈ (0...𝑀)) → (𝑐) ≤ if( = 0, (𝑃 − 1), 𝑃))
5948, 51, 53, 58fsumle 14531 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃))
60 nn0uz 11722 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
614, 60syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘0))
623nnnn0d 11351 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℕ0)
6329, 62ifcld 4131 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6463adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
6564nn0cnd 11353 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℂ)
66 iftrue 4092 . . . . . . . . . . . . . . . . . 18 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
6761, 65, 66fsum1p 14482 . . . . . . . . . . . . . . . . 17 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)))
68 0p1e1 11132 . . . . . . . . . . . . . . . . . . . . . 22 (0 + 1) = 1
6968oveq1i 6660 . . . . . . . . . . . . . . . . . . . . 21 ((0 + 1)...𝑀) = (1...𝑀)
7069a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
7170sumeq1d 14431 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃))
72 0red 10041 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 ∈ ℝ)
73 1red 10055 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ∈ ℝ)
74 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (1...𝑀) → ∈ ℤ)
7574zred 11482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → ∈ ℝ)
76 0lt1 10550 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 < 1
7776a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 0 < 1)
78 elfzle1 12344 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ (1...𝑀) → 1 ≤ )
7972, 73, 75, 77, 78ltletrd 10197 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ∈ (1...𝑀) → 0 < )
8079gt0ne0d 10592 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (1...𝑀) → ≠ 0)
8180neneqd 2799 . . . . . . . . . . . . . . . . . . . . . 22 ( ∈ (1...𝑀) → ¬ = 0)
8281iffalsed 4097 . . . . . . . . . . . . . . . . . . . . 21 ( ∈ (1...𝑀) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8382adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∈ (1...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
8483sumeq2dv 14433 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)if( = 0, (𝑃 − 1), 𝑃) = Σ ∈ (1...𝑀)𝑃)
85 fzfid 12772 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1...𝑀) ∈ Fin)
863nncnd 11036 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℂ)
87 fsumconst 14522 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑀) ∈ Fin ∧ 𝑃 ∈ ℂ) → Σ ∈ (1...𝑀)𝑃 = ((#‘(1...𝑀)) · 𝑃))
8885, 86, 87syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → Σ ∈ (1...𝑀)𝑃 = ((#‘(1...𝑀)) · 𝑃))
89 hashfz1 13134 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
904, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (#‘(1...𝑀)) = 𝑀)
9190oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((#‘(1...𝑀)) · 𝑃) = (𝑀 · 𝑃))
9288, 91eqtrd 2656 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ ∈ (1...𝑀)𝑃 = (𝑀 · 𝑃))
9371, 84, 923eqtrd 2660 . . . . . . . . . . . . . . . . . 18 (𝜑 → Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃) = (𝑀 · 𝑃))
9493oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + Σ ∈ ((0 + 1)...𝑀)if( = 0, (𝑃 − 1), 𝑃)) = ((𝑃 − 1) + (𝑀 · 𝑃)))
9529nn0cnd 11353 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
964, 62nn0mulcld 11356 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · 𝑃) ∈ ℕ0)
9796nn0cnd 11353 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 · 𝑃) ∈ ℂ)
9895, 97addcomd 10238 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) + (𝑀 · 𝑃)) = ((𝑀 · 𝑃) + (𝑃 − 1)))
9967, 94, 983eqtrd 2660 . . . . . . . . . . . . . . . 16 (𝜑 → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10099ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)if( = 0, (𝑃 − 1), 𝑃) = ((𝑀 · 𝑃) + (𝑃 − 1)))
10159, 100breqtrd 4679 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ ∈ (0...𝑀)(𝑐) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10247, 101syl5eqbr 4688 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10345, 102eqbrtrd 4675 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ∀𝑘 ∈ (0...𝑀)(𝑐𝑘) ≤ if(𝑘 = 0, (𝑃 − 1), 𝑃)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
10440, 103syldan 487 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
105 etransclem32.ngt . . . . . . . . . . . . 13 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)
10696, 29nn0addcld 11355 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℕ0)
107106nn0red 11352 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) ∈ ℝ)
1086nn0red 11352 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
109107, 108ltnled 10184 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁 ↔ ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1))))
110105, 109mpbid 222 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
111110ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ ¬ ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ¬ 𝑁 ≤ ((𝑀 · 𝑃) + (𝑃 − 1)))
112104, 111condan 835 . . . . . . . . . 10 ((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
113112adantlr 751 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
114 nfv 1843 . . . . . . . . . . . . 13 𝑗(𝜑𝑥𝑋)
115 nfcv 2764 . . . . . . . . . . . . . . . . 17 𝑗(0...𝑀)
116115nfsum1 14420 . . . . . . . . . . . . . . . 16 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)
117116nfeq1 2778 . . . . . . . . . . . . . . 15 𝑗Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁
118 nfcv 2764 . . . . . . . . . . . . . . 15 𝑗((0...𝑁) ↑𝑚 (0...𝑀))
119117, 118nfrab 3123 . . . . . . . . . . . . . 14 𝑗{𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
120119nfcri 2758 . . . . . . . . . . . . 13 𝑗 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}
121114, 120nfan 1828 . . . . . . . . . . . 12 𝑗((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
122 nfv 1843 . . . . . . . . . . . 12 𝑗 𝑘 ∈ (0...𝑀)
123 nfv 1843 . . . . . . . . . . . 12 𝑗if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)
124121, 122, 123nf3an 1831 . . . . . . . . . . 11 𝑗(((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
125 nfcv 2764 . . . . . . . . . . 11 𝑗(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)
126 fzfid 12772 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (0...𝑀) ∈ Fin)
1271ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
1282ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1293ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
130 etransclem5 40456 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
1317, 130eqtri 2644 . . . . . . . . . . . . . 14 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
132 simpr 477 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
13323ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
134 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
135133, 134ffvelrnd 6360 . . . . . . . . . . . . . . . 16 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
136135adantllr 755 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
137 elfznn0 12433 . . . . . . . . . . . . . . 15 ((𝑐𝑗) ∈ (0...𝑁) → (𝑐𝑗) ∈ ℕ0)
138136, 137syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
139127, 128, 129, 131, 132, 138etransclem20 40471 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)):𝑋⟶ℂ)
140 simpllr 799 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → 𝑥𝑋)
141139, 140ffvelrnd 6360 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
1421413ad2antl1 1223 . . . . . . . . . . 11 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑗 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) ∈ ℂ)
143 fveq2 6191 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝐻𝑗) = (𝐻𝑘))
144143oveq2d 6666 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → (𝑆 D𝑛 (𝐻𝑗)) = (𝑆 D𝑛 (𝐻𝑘)))
145144, 41fveq12d 6197 . . . . . . . . . . . 12 (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗)) = ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)))
146145fveq1d 6193 . . . . . . . . . . 11 (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))
147 simp2 1062 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑘 ∈ (0...𝑀))
1481ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑆 ∈ {ℝ, ℂ})
1491483ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑆 ∈ {ℝ, ℂ})
1502ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1511503ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
1523ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → 𝑃 ∈ ℕ)
1531523ad2ant1 1082 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑃 ∈ ℕ)
154 etransclem5 40456 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
1557, 154eqtri 2644 . . . . . . . . . . . . 13 𝐻 = ( ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦)↑if( = 0, (𝑃 − 1), 𝑃))))
156 fzssz 12343 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℤ
157156, 25sseldi 3601 . . . . . . . . . . . . . . 15 (((𝜑𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
158157adantllr 755 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℤ)
1591583adant3 1081 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (𝑐𝑘) ∈ ℤ)
160 simp3 1063 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘))
161149, 151, 153, 155, 147, 159, 160etransclem19 40470 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑦𝑋 ↦ 0))
162 eqidd 2623 . . . . . . . . . . . 12 (((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) ∧ 𝑦 = 𝑥) → 0 = 0)
163 simp1lr 1125 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 𝑥𝑋)
164 0red 10041 . . . . . . . . . . . 12 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → 0 ∈ ℝ)
165161, 162, 163, 164fvmptd 6288 . . . . . . . . . . 11 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) = 0)
166124, 125, 126, 142, 146, 147, 165fprod0 39828 . . . . . . . . . 10 ((((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) ∧ 𝑘 ∈ (0...𝑀) ∧ if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
167166rexlimdv3a 3033 . . . . . . . . 9 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → (∃𝑘 ∈ (0...𝑀)if(𝑘 = 0, (𝑃 − 1), 𝑃) < (𝑐𝑘) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0))
168113, 167mpd 15 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
16914, 168syldan 487 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥) = 0)
170169oveq2d 6666 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
1716faccld 13071 . . . . . . . . . . 11 (𝜑 → (!‘𝑁) ∈ ℕ)
172171nncnd 11036 . . . . . . . . . 10 (𝜑 → (!‘𝑁) ∈ ℂ)
173172adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (!‘𝑁) ∈ ℂ)
174 fzfid 12772 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (0...𝑀) ∈ Fin)
175 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝜑)
17613adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
177 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
178175, 176, 177, 135syl21anc 1325 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...𝑁))
179178, 137syl 17 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
180179faccld 13071 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
181180nncnd 11036 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℂ)
182174, 181fprodcl 14682 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
183180nnne0d 11065 . . . . . . . . . 10 (((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ≠ 0)
184174, 181, 183fprodn0 14709 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
185173, 182, 184divcld 10801 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
186185mul01d 10235 . . . . . . 7 ((𝜑𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
187186adantlr 751 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
188170, 187eqtrd 2656 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
189188sumeq2dv 14433 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0)
190 eqid 2622 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
191190, 6etransclem16 40467 . . . . . . 7 (𝜑 → ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin)
192191olcd 408 . . . . . 6 (𝜑 → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
193192adantr 481 . . . . 5 ((𝜑𝑥𝑋) → (((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin))
194 sumz 14453 . . . . 5 ((((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ⊆ (ℤ𝐴) ∨ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁) ∈ Fin) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
195193, 194syl 17 . . . 4 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)0 = 0)
196189, 195eqtrd 2656 . . 3 ((𝜑𝑥𝑋) → Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥)) = 0)
197196mpteq2dva 4744 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ ((𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))) = (𝑥𝑋 ↦ 0))
1989, 197eqtrd 2656 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  wss 3574  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326  cexp 12860  !cfa 13060  #chash 13117  Σcsu 14416  cprod 14635  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem46  40497
  Copyright terms: Public domain W3C validator