MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soisoi Structured version   Visualization version   GIF version

Theorem soisoi 6578
Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
soisoi (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem soisoi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 794 . . . . 5 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴onto𝐵)
2 fof 6115 . . . . 5 (𝐻:𝐴onto𝐵𝐻:𝐴𝐵)
31, 2syl 17 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴𝐵)
4 simpll 790 . . . . . . . 8 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝑅 Or 𝐴)
5 sotrieq 5062 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏𝑏𝑅𝑎)))
65con2bid 344 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
74, 6sylan 488 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
8 simprr 796 . . . . . . . . . 10 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))
9 breq1 4656 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥𝑅𝑦𝑎𝑅𝑦))
10 fveq2 6191 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝐻𝑥) = (𝐻𝑎))
1110breq1d 4663 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑦)))
129, 11imbi12d 334 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦))))
13 breq2 4657 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (𝑎𝑅𝑦𝑎𝑅𝑏))
14 fveq2 6191 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐻𝑦) = (𝐻𝑏))
1514breq2d 4665 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1613, 15imbi12d 334 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏))))
1712, 16rspc2va 3323 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
1817ancoms 469 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
198, 18sylan 488 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
20 simpllr 799 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑆 Po 𝐵)
21 simplrl 800 . . . . . . . . . . . . 13 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴onto𝐵)
2221, 2syl 17 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴𝐵)
23 simprr 796 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
2422, 23ffvelrnd 6360 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑏) ∈ 𝐵)
25 poirr 5046 . . . . . . . . . . . 12 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ¬ (𝐻𝑏)𝑆(𝐻𝑏))
26 breq1 4656 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
2726notbid 308 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
2825, 27syl5ibrcom 237 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
2920, 24, 28syl2anc 693 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
3029con2d 129 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ¬ (𝐻𝑎) = (𝐻𝑏)))
3119, 30syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
32 breq1 4656 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
33 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝐻𝑥) = (𝐻𝑏))
3433breq1d 4663 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑦)))
3532, 34imbi12d 334 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦))))
36 breq2 4657 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑏𝑅𝑦𝑏𝑅𝑎))
37 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐻𝑦) = (𝐻𝑎))
3837breq2d 4665 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐻𝑏)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑎)))
3936, 38imbi12d 334 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎))))
4035, 39rspc2va 3323 . . . . . . . . . . . 12 (((𝑏𝐴𝑎𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4140ancoms 469 . . . . . . . . . . 11 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑏𝐴𝑎𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4241ancom2s 844 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
438, 42sylan 488 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
44 breq2 4657 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑏)𝑆(𝐻𝑎) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
4544notbid 308 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑏)𝑆(𝐻𝑎) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
4625, 45syl5ibrcom 237 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4720, 24, 46syl2anc 693 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4847con2d 129 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
4943, 48syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎) = (𝐻𝑏)))
5031, 49jaod 395 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
517, 50sylbird 250 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
5251con4d 114 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
5352ralrimivva 2971 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
54 dff13 6512 . . . 4 (𝐻:𝐴1-1𝐵 ↔ (𝐻:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏)))
553, 53, 54sylanbrc 698 . . 3 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1𝐵)
56 df-f1o 5895 . . 3 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1𝐵𝐻:𝐴onto𝐵))
5755, 1, 56sylanbrc 698 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1-onto𝐵)
58 sotric 5061 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏𝑏𝑅𝑎)))
5958con2bid 344 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
604, 59sylan 488 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
61 fveq2 6191 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
6261breq1d 4663 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
6362notbid 308 . . . . . . . 8 (𝑎 = 𝑏 → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
6425, 63syl5ibrcom 237 . . . . . . 7 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
6520, 24, 64syl2anc 693 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
66 simprl 794 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
6722, 66ffvelrnd 6360 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑎) ∈ 𝐵)
68 po2nr 5048 . . . . . . . . 9 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
69 imnan 438 . . . . . . . . 9 (((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)) ↔ ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
7068, 69sylibr 224 . . . . . . . 8 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7120, 24, 67, 70syl12anc 1324 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7243, 71syld 47 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7365, 72jaod 395 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7460, 73sylbird 250 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7519, 74impcon4bid 217 . . 3 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
7675ralrimivva 2971 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
77 df-isom 5897 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
7857, 76, 77sylanbrc 698 1 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653   Po wpo 5033   Or wor 5034  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  ordtypelem8  8430  cantnf  8590  fin23lem27  9150  iccpnfhmeo  22744  xrhmeo  22745  logccv  24409  xrge0iifiso  29981
  Copyright terms: Public domain W3C validator