| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1064 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ+) |
| 2 | 1 | rpred 11872 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ) |
| 3 | | simpl2 1065 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ+) |
| 4 | 3 | rpred 11872 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ) |
| 5 | | simpl3 1066 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 < 𝐵) |
| 6 | 1 | rpgt0d 11875 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 0 <
𝐴) |
| 7 | | ltpnf 11954 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) |
| 8 | 4, 7 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 < +∞) |
| 9 | | 0xr 10086 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
| 10 | | pnfxr 10092 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
| 11 | | iccssioo 12242 |
. . . . . . . . . . . 12
⊢ (((0
∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0
< 𝐴 ∧ 𝐵 < +∞)) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
| 12 | 9, 10, 11 | mpanl12 718 |
. . . . . . . . . . 11
⊢ ((0 <
𝐴 ∧ 𝐵 < +∞) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
| 13 | 6, 8, 12 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆ (0(,)+∞)) |
| 14 | | ioorp 12251 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
| 15 | 13, 14 | syl6sseq 3651 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴[,]𝐵) ⊆
ℝ+) |
| 16 | 15 | sselda 3603 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ+) |
| 17 | 16 | relogcld 24369 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (log‘𝑥) ∈ ℝ) |
| 18 | 17 | renegcld 10457 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → -(log‘𝑥) ∈ ℝ) |
| 19 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) |
| 20 | 18, 19 | fmptd 6385 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ) |
| 21 | | ax-resscn 9993 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
| 22 | 15 | resabs1d 5428 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log
↾ ℝ+) ↾ (𝐴[,]𝐵)) = (log ↾ (𝐴[,]𝐵))) |
| 23 | | ssid 3624 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
| 24 | | cncfss 22702 |
. . . . . . . . . . 11
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ)) |
| 25 | 21, 23, 24 | mp2an 708 |
. . . . . . . . . 10
⊢
(ℝ+–cn→ℝ) ⊆
(ℝ+–cn→ℂ) |
| 26 | | relogcn 24384 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℝ) |
| 27 | 25, 26 | sselii 3600 |
. . . . . . . . 9
⊢ (log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) |
| 28 | | rescncf 22700 |
. . . . . . . . 9
⊢ ((𝐴[,]𝐵) ⊆ ℝ+ → ((log
↾ ℝ+) ∈ (ℝ+–cn→ℂ) → ((log ↾
ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))) |
| 29 | 15, 27, 28 | mpisyl 21 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((log
↾ ℝ+) ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 30 | 22, 29 | eqeltrrd 2702 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 31 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴[,]𝐵) → ((log ↾ (𝐴[,]𝐵))‘𝑥) = (log‘𝑥)) |
| 32 | 31 | negeqd 10275 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴[,]𝐵) → -((log ↾ (𝐴[,]𝐵))‘𝑥) = -(log‘𝑥)) |
| 33 | 32 | mpteq2ia 4740 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) |
| 34 | 33 | eqcomi 2631 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -((log ↾ (𝐴[,]𝐵))‘𝑥)) |
| 35 | 34 | negfcncf 22722 |
. . . . . . 7
⊢ ((log
↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 36 | 30, 35 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 37 | | cncffvrn 22701 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ (𝑥
∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)) |
| 38 | 21, 36, 37 | sylancr 695 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)):(𝐴[,]𝐵)⟶ℝ)) |
| 39 | 20, 38 | mpbird 247 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 40 | | ioossre 12235 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 41 | | ltso 10118 |
. . . . . . . 8
⊢ < Or
ℝ |
| 42 | | soss 5053 |
. . . . . . . 8
⊢ ((𝐴(,)𝐵) ⊆ ℝ → ( < Or ℝ
→ < Or (𝐴(,)𝐵))) |
| 43 | 40, 41, 42 | mp2 9 |
. . . . . . 7
⊢ < Or
(𝐴(,)𝐵) |
| 44 | 43 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or
(𝐴(,)𝐵)) |
| 45 | | ioossicc 12259 |
. . . . . . . . . . . . . 14
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 46 | 45, 15 | syl5ss 3614 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝐴(,)𝐵) ⊆
ℝ+) |
| 47 | 46 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ+) |
| 48 | 47 | rprecred 11883 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (1 / 𝑥) ∈ ℝ) |
| 49 | 48 | renegcld 10457 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ (𝐴(,)𝐵)) → -(1 / 𝑥) ∈ ℝ) |
| 50 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) |
| 51 | 49, 50 | fmptd 6385 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ) |
| 52 | | frn 6053 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)⟶ℝ → ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ) |
| 53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ) |
| 54 | | soss 5053 |
. . . . . . . 8
⊢ (ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ⊆ ℝ → ( < Or ℝ
→ < Or ran (𝑥
∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
| 55 | 53, 41, 54 | mpisyl 21 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Or
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 56 | | sopo 5052 |
. . . . . . 7
⊢ ( < Or
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 57 | 55, 56 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → < Po
ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 58 | | negex 10279 |
. . . . . . . . 9
⊢ -(1 /
𝑥) ∈
V |
| 59 | 58, 50 | fnmpti 6022 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) |
| 60 | | dffn4 6121 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Fn (𝐴(,)𝐵) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 61 | 59, 60 | mpbi 220 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) |
| 62 | 61 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 63 | 46 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ+) |
| 64 | 63 | adantrl 752 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑧 ∈ ℝ+) |
| 65 | 64 | rprecred 11883 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑧) ∈ ℝ) |
| 66 | 46 | sselda 3603 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ℝ+) |
| 67 | 66 | adantrr 753 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → 𝑦 ∈ ℝ+) |
| 68 | 67 | rprecred 11883 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (1 / 𝑦) ∈ ℝ) |
| 69 | 65, 68 | ltnegd 10605 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → ((1 / 𝑧) < (1 / 𝑦) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
| 70 | 67, 64 | ltrecd 11890 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ (1 / 𝑧) < (1 / 𝑦))) |
| 71 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (1 / 𝑥) = (1 / 𝑦)) |
| 72 | 71 | negeqd 10275 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → -(1 / 𝑥) = -(1 / 𝑦)) |
| 73 | | negex 10279 |
. . . . . . . . . . . 12
⊢ -(1 /
𝑦) ∈
V |
| 74 | 72, 50, 73 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) = -(1 / 𝑦)) |
| 75 | | oveq2 6658 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (1 / 𝑥) = (1 / 𝑧)) |
| 76 | 75 | negeqd 10275 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → -(1 / 𝑥) = -(1 / 𝑧)) |
| 77 | | negex 10279 |
. . . . . . . . . . . 12
⊢ -(1 /
𝑧) ∈
V |
| 78 | 76, 50, 77 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝐴(,)𝐵) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) = -(1 / 𝑧)) |
| 79 | 74, 78 | breqan12d 4669 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
| 80 | 79 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧) ↔ -(1 / 𝑦) < -(1 / 𝑧))) |
| 81 | 69, 70, 80 | 3bitr4d 300 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 ↔ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
| 82 | 81 | biimpd 219 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ (𝑦 ∈ (𝐴(,)𝐵) ∧ 𝑧 ∈ (𝐴(,)𝐵))) → (𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
| 83 | 82 | ralrimivva 2971 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧))) |
| 84 | | soisoi 6578 |
. . . . . 6
⊢ ((( <
Or (𝐴(,)𝐵) ∧ < Po ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ∧ ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)):(𝐴(,)𝐵)–onto→ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)∀𝑧 ∈ (𝐴(,)𝐵)(𝑦 < 𝑧 → ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑦) < ((𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))‘𝑧)))) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
| 85 | 44, 57, 62, 83, 84 | syl22anc 1327 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
| 86 | | reelprrecn 10028 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
| 87 | 86 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ℝ
∈ {ℝ, ℂ}) |
| 88 | | relogcl 24322 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 89 | 88 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) |
| 90 | 89 | recnd 10068 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℂ) |
| 91 | 90 | negcld 10379 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ -(log‘𝑥)
∈ ℂ) |
| 92 | 58 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ -(1 / 𝑥) ∈
V) |
| 93 | | ovexd 6680 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
V) |
| 94 | | dvrelog 24383 |
. . . . . . . . 9
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
| 95 | | relogf1o 24313 |
. . . . . . . . . . . . 13
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
| 96 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
| 97 | 95, 96 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾
ℝ+):ℝ+⟶ℝ) |
| 98 | 97 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) |
| 99 | | fvres 6207 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
| 100 | 99 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
| 101 | 98, 100 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) |
| 102 | 101 | oveq2d 6666 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
| 103 | 94, 102 | syl5reqr 2671 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
| 104 | 87, 90, 93, 103 | dvmptneg 23729 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈
ℝ+ ↦ -(log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ -(1 /
𝑥))) |
| 105 | | eqid 2622 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 106 | 105 | tgioo2 22606 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 107 | | iccntr 22624 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 108 | 2, 4, 107 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 109 | 87, 91, 92, 104, 15, 106, 105, 108 | dvmptres2 23725 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) |
| 110 | | isoeq1 6567 |
. . . . . 6
⊢ ((ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) → ((ℝ D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))) |
| 111 | 109, 110 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
((ℝ D (𝑥 ∈
(𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))) ↔ (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥))))) |
| 112 | 85, 111 | mpbird 247 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (ℝ
D (𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))) Isom < , < ((𝐴(,)𝐵), ran (𝑥 ∈ (𝐴(,)𝐵) ↦ -(1 / 𝑥)))) |
| 113 | | simpr 477 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
(0(,)1)) |
| 114 | | eqid 2622 |
. . . 4
⊢ ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) |
| 115 | 2, 4, 5, 39, 112, 113, 114 | dvcvx 23783 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)))) |
| 116 | | ax-1cn 9994 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
| 117 | | elioore 12205 |
. . . . . . . . . 10
⊢ (𝑇 ∈ (0(,)1) → 𝑇 ∈
ℝ) |
| 118 | 117 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
ℝ) |
| 119 | 118 | recnd 10068 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
ℂ) |
| 120 | | nncan 10310 |
. . . . . . . 8
⊢ ((1
∈ ℂ ∧ 𝑇
∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇) |
| 121 | 116, 119,
120 | sylancr 695 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− (1 − 𝑇)) =
𝑇) |
| 122 | 121 | oveq1d 6665 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− (1 − 𝑇))
· 𝐴) = (𝑇 · 𝐴)) |
| 123 | 122 | oveq1d 6665 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1
− (1 − 𝑇))
· 𝐴) + ((1 −
𝑇) · 𝐵)) = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) |
| 124 | | ioossicc 12259 |
. . . . . . . 8
⊢ (0(,)1)
⊆ (0[,]1) |
| 125 | 124, 113 | sseldi 3601 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝑇 ∈
(0[,]1)) |
| 126 | | iirev 22728 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → (1
− 𝑇) ∈
(0[,]1)) |
| 127 | 125, 126 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
(0[,]1)) |
| 128 | | lincmb01cmp 12315 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1
− 𝑇)) · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
| 129 | 2, 4, 5, 127, 128 | syl31anc 1329 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((1
− (1 − 𝑇))
· 𝐴) + ((1 −
𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
| 130 | 123, 129 | eqeltrrd 2702 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵)) |
| 131 | | fveq2 6191 |
. . . . . 6
⊢ (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → (log‘𝑥) = (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
| 132 | 131 | negeqd 10275 |
. . . . 5
⊢ (𝑥 = ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) → -(log‘𝑥) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
| 133 | | negex 10279 |
. . . . 5
⊢
-(log‘((𝑇
· 𝐴) + ((1 −
𝑇) · 𝐵))) ∈ V |
| 134 | 132, 19, 133 | fvmpt 6282 |
. . . 4
⊢ (((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
| 135 | 130, 134 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) = -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |
| 136 | 1 | rpxrd 11873 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈
ℝ*) |
| 137 | 3 | rpxrd 11873 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈
ℝ*) |
| 138 | 2, 4, 5 | ltled 10185 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ≤ 𝐵) |
| 139 | | lbicc2 12288 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 140 | 136, 137,
138, 139 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 141 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴)) |
| 142 | 141 | negeqd 10275 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → -(log‘𝑥) = -(log‘𝐴)) |
| 143 | | negex 10279 |
. . . . . . . . 9
⊢
-(log‘𝐴)
∈ V |
| 144 | 142, 19, 143 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴)) |
| 145 | 140, 144 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴) = -(log‘𝐴)) |
| 146 | 145 | oveq2d 6666 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = (𝑇 · -(log‘𝐴))) |
| 147 | 1 | relogcld 24369 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐴) ∈
ℝ) |
| 148 | 147 | recnd 10068 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐴) ∈
ℂ) |
| 149 | 119, 148 | mulneg2d 10484 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · -(log‘𝐴)) = -(𝑇 · (log‘𝐴))) |
| 150 | 146, 149 | eqtrd 2656 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) = -(𝑇 · (log‘𝐴))) |
| 151 | | ubicc2 12289 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 152 | 136, 137,
138, 151 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 153 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) |
| 154 | 153 | negeqd 10275 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → -(log‘𝑥) = -(log‘𝐵)) |
| 155 | | negex 10279 |
. . . . . . . . 9
⊢
-(log‘𝐵)
∈ V |
| 156 | 154, 19, 155 | fvmpt 6282 |
. . . . . . . 8
⊢ (𝐵 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵)) |
| 157 | 152, 156 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵) = -(log‘𝐵)) |
| 158 | 157 | oveq2d 6666 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = ((1 − 𝑇) · -(log‘𝐵))) |
| 159 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 160 | | resubcl 10345 |
. . . . . . . . 9
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
| 161 | 159, 118,
160 | sylancr 695 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
ℝ) |
| 162 | 161 | recnd 10068 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (1
− 𝑇) ∈
ℂ) |
| 163 | 3 | relogcld 24369 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐵) ∈
ℝ) |
| 164 | 163 | recnd 10068 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘𝐵) ∈
ℂ) |
| 165 | 162, 164 | mulneg2d 10484 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
-(log‘𝐵)) = -((1
− 𝑇) ·
(log‘𝐵))) |
| 166 | 158, 165 | eqtrd 2656 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵)) = -((1 − 𝑇) · (log‘𝐵))) |
| 167 | 150, 166 | oveq12d 6668 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵)))) |
| 168 | 118, 147 | remulcld 10070 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈
ℝ) |
| 169 | 168 | recnd 10068 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (𝑇 · (log‘𝐴)) ∈
ℂ) |
| 170 | 161, 163 | remulcld 10070 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
(log‘𝐵)) ∈
ℝ) |
| 171 | 170 | recnd 10068 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((1
− 𝑇) ·
(log‘𝐵)) ∈
ℂ) |
| 172 | 169, 171 | negdid 10405 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) = (-(𝑇 · (log‘𝐴)) + -((1 − 𝑇) · (log‘𝐵)))) |
| 173 | 167, 172 | eqtr4d 2659 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐴)) + ((1 − 𝑇) · ((𝑥 ∈ (𝐴[,]𝐵) ↦ -(log‘𝑥))‘𝐵))) = -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))) |
| 174 | 115, 135,
173 | 3brtr3d 4684 |
. 2
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
-(log‘((𝑇 ·
𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵)))) |
| 175 | 168, 170 | readdcld 10069 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) ∈
ℝ) |
| 176 | 15, 130 | sseldd 3604 |
. . . 4
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)) ∈
ℝ+) |
| 177 | 176 | relogcld 24369 |
. . 3
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) →
(log‘((𝑇 ·
𝐴) + ((1 − 𝑇) · 𝐵))) ∈ ℝ) |
| 178 | 175, 177 | ltnegd 10605 |
. 2
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → (((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) ↔ -(log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵))) < -((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))))) |
| 179 | 174, 178 | mpbird 247 |
1
⊢ (((𝐴 ∈ ℝ+
∧ 𝐵 ∈
ℝ+ ∧ 𝐴
< 𝐵) ∧ 𝑇 ∈ (0(,)1)) → ((𝑇 · (log‘𝐴)) + ((1 − 𝑇) · (log‘𝐵))) < (log‘((𝑇 · 𝐴) + ((1 − 𝑇) · 𝐵)))) |