MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnf Structured version   Visualization version   GIF version

Theorem cantnf 8590
Description: The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴𝑜 𝑓(𝑎1)) ∘ 𝑎1) +𝑜 ((𝐴𝑜 𝑓(𝑎2)) ∘ 𝑎2) +𝑜 ... over all indexes 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴𝑜 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 8574, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnf (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnf
Dummy variables 𝑓 𝑐 𝑔 𝑘 𝑡 𝑢 𝑣 𝑎 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 oemapval.t . . 3 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4oemapso 8579 . 2 (𝜑𝑇 Or 𝑆)
6 oecl 7617 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝑜 𝐵) ∈ On)
72, 3, 6syl2anc 693 . . . 4 (𝜑 → (𝐴𝑜 𝐵) ∈ On)
8 eloni 5733 . . . 4 ((𝐴𝑜 𝐵) ∈ On → Ord (𝐴𝑜 𝐵))
97, 8syl 17 . . 3 (𝜑 → Ord (𝐴𝑜 𝐵))
10 ordwe 5736 . . 3 (Ord (𝐴𝑜 𝐵) → E We (𝐴𝑜 𝐵))
11 weso 5105 . . 3 ( E We (𝐴𝑜 𝐵) → E Or (𝐴𝑜 𝐵))
12 sopo 5052 . . 3 ( E Or (𝐴𝑜 𝐵) → E Po (𝐴𝑜 𝐵))
139, 10, 11, 124syl 19 . 2 (𝜑 → E Po (𝐴𝑜 𝐵))
141, 2, 3cantnff 8571 . . 3 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
15 frn 6053 . . . . 5 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → ran (𝐴 CNF 𝐵) ⊆ (𝐴𝑜 𝐵))
1614, 15syl 17 . . . 4 (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴𝑜 𝐵))
17 onss 6990 . . . . . . . 8 ((𝐴𝑜 𝐵) ∈ On → (𝐴𝑜 𝐵) ⊆ On)
187, 17syl 17 . . . . . . 7 (𝜑 → (𝐴𝑜 𝐵) ⊆ On)
1918sseld 3602 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ On))
20 eleq1 2689 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ (𝐴𝑜 𝐵) ↔ 𝑦 ∈ (𝐴𝑜 𝐵)))
21 eleq1 2689 . . . . . . . . . 10 (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2220, 21imbi12d 334 . . . . . . . . 9 (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
2322imbi2d 330 . . . . . . . 8 (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))))
24 r19.21v 2960 . . . . . . . . 9 (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))
25 ordelss 5739 . . . . . . . . . . . . . . . . . . 19 ((Ord (𝐴𝑜 𝐵) ∧ 𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ⊆ (𝐴𝑜 𝐵))
269, 25sylan 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ⊆ (𝐴𝑜 𝐵))
2726sselda 3603 . . . . . . . . . . . . . . . . 17 (((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) ∧ 𝑦𝑡) → 𝑦 ∈ (𝐴𝑜 𝐵))
28 pm5.5 351 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (𝐴𝑜 𝐵) → ((𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
2927, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) ∧ 𝑦𝑡) → ((𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵)))
3029ralbidva 2985 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)))
31 dfss3 3592 . . . . . . . . . . . . . . 15 (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))
3230, 31syl6bbr 278 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵)))
33 eleq1 2689 . . . . . . . . . . . . . . . 16 (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵)))
342adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On)
3534adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On)
363adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On)
3736adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On)
38 simplrl 800 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴𝑜 𝐵))
39 simplrr 801 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵))
407adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴𝑜 𝐵) ∈ On)
41 simprl 794 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴𝑜 𝐵))
42 onelon 5748 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑜 𝐵) ∈ On ∧ 𝑡 ∈ (𝐴𝑜 𝐵)) → 𝑡 ∈ On)
4340, 41, 42syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On)
44 on0eln0 5780 . . . . . . . . . . . . . . . . . . 19 (𝑡 ∈ On → (∅ ∈ 𝑡𝑡 ≠ ∅))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡𝑡 ≠ ∅))
4645biimpar 502 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡)
47 eqid 2622 . . . . . . . . . . . . . . . . 17 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)} = {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}
48 eqid 2622 . . . . . . . . . . . . . . . . 17 (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)) = (℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))
49 eqid 2622 . . . . . . . . . . . . . . . . 17 (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))) = (1st ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)))
50 eqid 2622 . . . . . . . . . . . . . . . . 17 (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡))) = (2nd ‘(℩𝑑𝑎 ∈ On ∃𝑏 ∈ (𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)})(𝑑 = ⟨𝑎, 𝑏⟩ ∧ (((𝐴𝑜 {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴𝑜 𝑐)}) ·𝑜 𝑎) +𝑜 𝑏) = 𝑡)))
511, 35, 37, 4, 38, 39, 46, 47, 48, 49, 50cantnflem4 8589 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
52 fczsupp0 7324 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 × {∅}) supp ∅) = ∅
5352eqcomi 2631 . . . . . . . . . . . . . . . . . . . 20 ∅ = ((𝐵 × {∅}) supp ∅)
54 oieq2 8418 . . . . . . . . . . . . . . . . . . . 20 (∅ = ((𝐵 × {∅}) supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅)))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . . 19 OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp ∅))
56 ne0i 3921 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵𝐵 ≠ ∅)
57 ne0i 3921 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ (𝐴𝑜 𝐵) → (𝐴𝑜 𝐵) ≠ ∅)
5857ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴𝑜 𝐵) ≠ ∅)
59 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐴 = ∅ → (𝐴𝑜 𝐵) = (∅ ↑𝑜 𝐵))
6059neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 = ∅ → ((𝐴𝑜 𝐵) ≠ ∅ ↔ (∅ ↑𝑜 𝐵) ≠ ∅))
6158, 60syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅ ↑𝑜 𝐵) ≠ ∅))
6261necon2d 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅ ↑𝑜 𝐵) = ∅ → 𝐴 ≠ ∅))
63 on0eln0 5780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ On → (∅ ∈ 𝐵𝐵 ≠ ∅))
64 oe0m1 7601 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑𝑜 𝐵) = ∅))
6563, 64bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅ ↑𝑜 𝐵) = ∅))
6636, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅ ↑𝑜 𝐵) = ∅))
67 on0eln0 5780 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6834, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6962, 66, 683imtr4d 283 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴))
7056, 69syl5 34 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝑦𝐵 → ∅ ∈ 𝐴))
7170imp 445 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦𝐵) → ∅ ∈ 𝐴)
72 fconstmpt 5163 . . . . . . . . . . . . . . . . . . . . 21 (𝐵 × {∅}) = (𝑦𝐵 ↦ ∅)
7371, 72fmptd 6385 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵𝐴)
74 0ex 4790 . . . . . . . . . . . . . . . . . . . . . . 23 ∅ ∈ V
7574a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∅ ∈ V)
763, 75fczfsuppd 8293 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 × {∅}) finSupp ∅)
7776adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp ∅)
781, 2, 3cantnfs 8563 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
7978adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵𝐴 ∧ (𝐵 × {∅}) finSupp ∅)))
8073, 77, 79mpbir2and 957 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆)
81 eqid 2622 . . . . . . . . . . . . . . . . . . 19 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)
821, 34, 36, 55, 80, 81cantnfval 8565 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)))
83 we0 5109 . . . . . . . . . . . . . . . . . . . . . 22 E We ∅
84 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23 OrdIso( E , ∅) = OrdIso( E , ∅)
8584oien 8443 . . . . . . . . . . . . . . . . . . . . . 22 ((∅ ∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈ ∅)
8674, 83, 85mp2an 708 . . . . . . . . . . . . . . . . . . . . 21 dom OrdIso( E , ∅) ≈ ∅
87 en0 8019 . . . . . . . . . . . . . . . . . . . . 21 (dom OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) = ∅)
8886, 87mpbi 220 . . . . . . . . . . . . . . . . . . . 20 dom OrdIso( E , ∅) = ∅
8988fveq2i 6194 . . . . . . . . . . . . . . . . . . 19 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅)
9081seqom0g 7551 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ V → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
9174, 90ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅
9289, 91eqtri 2644 . . . . . . . . . . . . . . . . . 18 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 × {∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , ∅)) = ∅
9382, 92syl6eq 2672 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅)
9414adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
95 ffn 6045 . . . . . . . . . . . . . . . . . . 19 ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆)
9694, 95syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆)
97 fnfvelrn 6356 . . . . . . . . . . . . . . . . . 18 (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9896, 80, 97syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵))
9993, 98eqeltrrd 2702 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵))
10033, 51, 99pm2.61ne 2879 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑡 ∈ (𝐴𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵))
101100expr 643 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
10232, 101sylbid 230 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴𝑜 𝐵)) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
103102ex 450 . . . . . . . . . . . 12 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
104103com23 86 . . . . . . . . . . 11 (𝜑 → (∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
105104a2i 14 . . . . . . . . . 10 ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
106105a1i 11 . . . . . . . . 9 (𝑡 ∈ On → ((𝜑 → ∀𝑦𝑡 (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10724, 106syl5bi 232 . . . . . . . 8 (𝑡 ∈ On → (∀𝑦𝑡 (𝜑 → (𝑦 ∈ (𝐴𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))))
10823, 107tfis2 7056 . . . . . . 7 (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
109108com3l 89 . . . . . 6 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵))))
11019, 109mpdd 43 . . . . 5 (𝜑 → (𝑡 ∈ (𝐴𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))
111110ssrdv 3609 . . . 4 (𝜑 → (𝐴𝑜 𝐵) ⊆ ran (𝐴 CNF 𝐵))
11216, 111eqssd 3620 . . 3 (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴𝑜 𝐵))
113 dffo2 6119 . . 3 ((𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴𝑜 𝐵)))
11414, 112, 113sylanbrc 698 . 2 (𝜑 → (𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵))
1152adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On)
1163adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On)
117 fveq2 6191 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑥𝑧) = (𝑥𝑡))
118 fveq2 6191 . . . . . . . . . . . 12 (𝑧 = 𝑡 → (𝑦𝑧) = (𝑦𝑡))
119117, 118eleq12d 2695 . . . . . . . . . . 11 (𝑧 = 𝑡 → ((𝑥𝑧) ∈ (𝑦𝑧) ↔ (𝑥𝑡) ∈ (𝑦𝑡)))
120 eleq1 2689 . . . . . . . . . . . . 13 (𝑧 = 𝑡 → (𝑧𝑤𝑡𝑤))
121120imbi1d 331 . . . . . . . . . . . 12 (𝑧 = 𝑡 → ((𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
122121ralbidv 2986 . . . . . . . . . . 11 (𝑧 = 𝑡 → (∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
123119, 122anbi12d 747 . . . . . . . . . 10 (𝑧 = 𝑡 → (((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
124123cbvrexv 3172 . . . . . . . . 9 (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))))
125 fveq1 6190 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑡) = (𝑢𝑡))
126 fveq1 6190 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (𝑦𝑡) = (𝑣𝑡))
127 eleq12 2691 . . . . . . . . . . . 12 (((𝑥𝑡) = (𝑢𝑡) ∧ (𝑦𝑡) = (𝑣𝑡)) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
128125, 126, 127syl2an 494 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑡) ∈ (𝑦𝑡) ↔ (𝑢𝑡) ∈ (𝑣𝑡)))
129 fveq1 6190 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → (𝑥𝑤) = (𝑢𝑤))
130 fveq1 6190 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (𝑦𝑤) = (𝑣𝑤))
131129, 130eqeqan12d 2638 . . . . . . . . . . . . 13 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑤) = (𝑦𝑤) ↔ (𝑢𝑤) = (𝑣𝑤)))
132131imbi2d 330 . . . . . . . . . . . 12 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
133132ralbidv 2986 . . . . . . . . . . 11 ((𝑥 = 𝑢𝑦 = 𝑣) → (∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤))))
134128, 133anbi12d 747 . . . . . . . . . 10 ((𝑥 = 𝑢𝑦 = 𝑣) → (((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
135134rexbidv 3052 . . . . . . . . 9 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑡𝐵 ((𝑥𝑡) ∈ (𝑦𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
136124, 135syl5bb 272 . . . . . . . 8 ((𝑥 = 𝑢𝑦 = 𝑣) → (∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))))
137136cbvopabv 4722 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
1384, 137eqtri 2644 . . . . . 6 𝑇 = {⟨𝑢, 𝑣⟩ ∣ ∃𝑡𝐵 ((𝑢𝑡) ∈ (𝑣𝑡) ∧ ∀𝑤𝐵 (𝑡𝑤 → (𝑢𝑤) = (𝑣𝑤)))}
139 simprll 802 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑆)
140 simprlr 803 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔𝑆)
141 simprr 796 . . . . . 6 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔)
142 eqid 2622 . . . . . 6 {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)} = {𝑐𝐵 ∣ (𝑓𝑐) ∈ (𝑔𝑐)}
143 eqid 2622 . . . . . 6 OrdIso( E , (𝑔 supp ∅)) = OrdIso( E , (𝑔 supp ∅))
144 eqid 2622 . . . . . 6 seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅) = seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑔 supp ∅))‘𝑘)) ·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅)
1451, 115, 116, 138, 139, 140, 141, 142, 143, 144cantnflem1 8586 . . . . 5 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
146 fvex 6201 . . . . . 6 ((𝐴 CNF 𝐵)‘𝑔) ∈ V
147146epelc 5031 . . . . 5 (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔))
148145, 147sylibr 224 . . . 4 ((𝜑 ∧ ((𝑓𝑆𝑔𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))
149148expr 643 . . 3 ((𝜑 ∧ (𝑓𝑆𝑔𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
150149ralrimivva 2971 . 2 (𝜑 → ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))
151 soisoi 6578 . 2 (((𝑇 Or 𝑆 ∧ E Po (𝐴𝑜 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆onto→(𝐴𝑜 𝐵) ∧ ∀𝑓𝑆𝑔𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
1525, 13, 114, 150, 151syl22anc 1327 1 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915  {csn 4177  cop 4183   cuni 4436   cint 4475   class class class wbr 4653  {copab 4712   E cep 5028   Po wpo 5033   Or wor 5034   We wwe 5072   × cxp 5112  dom cdm 5114  ran crn 5115  Ord word 5722  Oncon0 5723  cio 5849   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888   Isom wiso 5889  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  cen 7952   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  oemapwe  8591  cantnffval2  8592  cantnff1o  8593
  Copyright terms: Public domain W3C validator