| Step | Hyp | Ref
| Expression |
| 1 | | cantnfs.s |
. . 3
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 2 | | cantnfs.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
| 3 | | cantnfs.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
| 4 | | oemapval.t |
. . 3
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| 5 | 1, 2, 3, 4 | oemapso 8579 |
. 2
⊢ (𝜑 → 𝑇 Or 𝑆) |
| 6 | | oecl 7617 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑𝑜
𝐵) ∈
On) |
| 7 | 2, 3, 6 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ∈ On) |
| 8 | | eloni 5733 |
. . . 4
⊢ ((𝐴 ↑𝑜
𝐵) ∈ On → Ord
(𝐴
↑𝑜 𝐵)) |
| 9 | 7, 8 | syl 17 |
. . 3
⊢ (𝜑 → Ord (𝐴 ↑𝑜 𝐵)) |
| 10 | | ordwe 5736 |
. . 3
⊢ (Ord
(𝐴
↑𝑜 𝐵) → E We (𝐴 ↑𝑜 𝐵)) |
| 11 | | weso 5105 |
. . 3
⊢ ( E We
(𝐴
↑𝑜 𝐵) → E Or (𝐴 ↑𝑜 𝐵)) |
| 12 | | sopo 5052 |
. . 3
⊢ ( E Or
(𝐴
↑𝑜 𝐵) → E Po (𝐴 ↑𝑜 𝐵)) |
| 13 | 9, 10, 11, 12 | 4syl 19 |
. 2
⊢ (𝜑 → E Po (𝐴 ↑𝑜 𝐵)) |
| 14 | 1, 2, 3 | cantnff 8571 |
. . 3
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵)) |
| 15 | | frn 6053 |
. . . . 5
⊢ ((𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵) → ran (𝐴 CNF 𝐵) ⊆ (𝐴 ↑𝑜 𝐵)) |
| 16 | 14, 15 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝐴 CNF 𝐵) ⊆ (𝐴 ↑𝑜 𝐵)) |
| 17 | | onss 6990 |
. . . . . . . 8
⊢ ((𝐴 ↑𝑜
𝐵) ∈ On → (𝐴 ↑𝑜
𝐵) ⊆
On) |
| 18 | 7, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ⊆ On) |
| 19 | 18 | sseld 3602 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ On)) |
| 20 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑦 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ↔ 𝑦 ∈ (𝐴 ↑𝑜 𝐵))) |
| 21 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑦 → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
| 22 | 20, 21 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑡 = 𝑦 → ((𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) ↔ (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))) |
| 23 | 22 | imbi2d 330 |
. . . . . . . 8
⊢ (𝑡 = 𝑦 → ((𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))))) |
| 24 | | r19.21v 2960 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑡 (𝜑 → (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) ↔ (𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)))) |
| 25 | | ordelss 5739 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Ord
(𝐴
↑𝑜 𝐵) ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → 𝑡 ⊆ (𝐴 ↑𝑜 𝐵)) |
| 26 | 9, 25 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → 𝑡 ⊆ (𝐴 ↑𝑜 𝐵)) |
| 27 | 26 | sselda 3603 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) ∧ 𝑦 ∈ 𝑡) → 𝑦 ∈ (𝐴 ↑𝑜 𝐵)) |
| 28 | | pm5.5 351 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → ((𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) ∧ 𝑦 ∈ 𝑡) → ((𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
| 30 | 29 | ralbidva 2985 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ ∀𝑦 ∈ 𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵))) |
| 31 | | dfss3 3592 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ⊆ ran (𝐴 CNF 𝐵) ↔ ∀𝑦 ∈ 𝑡 𝑦 ∈ ran (𝐴 CNF 𝐵)) |
| 32 | 30, 31 | syl6bbr 278 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) ↔ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) |
| 33 | | eleq1 2689 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = ∅ → (𝑡 ∈ ran (𝐴 CNF 𝐵) ↔ ∅ ∈ ran (𝐴 CNF 𝐵))) |
| 34 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐴 ∈ On) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐴 ∈ On) |
| 36 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝐵 ∈ On) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝐵 ∈ On) |
| 38 | | simplrl 800 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) |
| 39 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ⊆ ran (𝐴 CNF 𝐵)) |
| 40 | 7 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 ↑𝑜 𝐵) ∈ On) |
| 41 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) |
| 42 | | onelon 5748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ↑𝑜
𝐵) ∈ On ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → 𝑡 ∈ On) |
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ On) |
| 44 | | on0eln0 5780 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ On → (∅
∈ 𝑡 ↔ 𝑡 ≠ ∅)) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝑡 ↔ 𝑡 ≠ ∅)) |
| 46 | 45 | biimpar 502 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → ∅ ∈ 𝑡) |
| 47 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)} = ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)} |
| 48 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡)) = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡)) |
| 49 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(1st ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡))) = (1st ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡))) |
| 50 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡))) = (2nd ‘(℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)})(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑𝑜 ∪ ∩ {𝑐 ∈ On ∣ 𝑡 ∈ (𝐴 ↑𝑜 𝑐)}) ·𝑜
𝑎) +𝑜
𝑏) = 𝑡))) |
| 51 | 1, 35, 37, 4, 38, 39, 46, 47, 48, 49, 50 | cantnflem4 8589 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑡 ≠ ∅) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) |
| 52 | | fczsupp0 7324 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐵 × {∅}) supp
∅) = ∅ |
| 53 | 52 | eqcomi 2631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ∅ =
((𝐵 × {∅}) supp
∅) |
| 54 | | oieq2 8418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
= ((𝐵 × {∅})
supp ∅) → OrdIso( E , ∅) = OrdIso( E , ((𝐵 × {∅}) supp
∅))) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ OrdIso( E
, ∅) = OrdIso( E , ((𝐵 × {∅}) supp
∅)) |
| 56 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝐵 → 𝐵 ≠ ∅) |
| 57 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → (𝐴 ↑𝑜 𝐵) ≠ ∅) |
| 58 | 57 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 ↑𝑜 𝐵) ≠ ∅) |
| 59 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐴 = ∅ → (𝐴 ↑𝑜
𝐵) = (∅
↑𝑜 𝐵)) |
| 60 | 59 | neeq1d 2853 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 = ∅ → ((𝐴 ↑𝑜
𝐵) ≠ ∅ ↔
(∅ ↑𝑜 𝐵) ≠ ∅)) |
| 61 | 58, 60 | syl5ibcom 235 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 = ∅ → (∅
↑𝑜 𝐵) ≠ ∅)) |
| 62 | 61 | necon2d 2817 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((∅
↑𝑜 𝐵) = ∅ → 𝐴 ≠ ∅)) |
| 63 | | on0eln0 5780 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ 𝐵 ≠ ∅)) |
| 64 | | oe0m1 7601 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ (∅
↑𝑜 𝐵) = ∅)) |
| 65 | 63, 64 | bitr3d 270 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ On → (𝐵 ≠ ∅ ↔ (∅
↑𝑜 𝐵) = ∅)) |
| 66 | 36, 65 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ ↔ (∅
↑𝑜 𝐵) = ∅)) |
| 67 | | on0eln0 5780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 68 | 34, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| 69 | 62, 66, 68 | 3imtr4d 283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 ≠ ∅ → ∅ ∈ 𝐴)) |
| 70 | 56, 69 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝑦 ∈ 𝐵 → ∅ ∈ 𝐴)) |
| 71 | 70 | imp 445 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) ∧ 𝑦 ∈ 𝐵) → ∅ ∈ 𝐴) |
| 72 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 × {∅}) = (𝑦 ∈ 𝐵 ↦ ∅) |
| 73 | 71, 72 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}):𝐵⟶𝐴) |
| 74 | | 0ex 4790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∅
∈ V |
| 75 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ∅ ∈
V) |
| 76 | 3, 75 | fczfsuppd 8293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 × {∅}) finSupp
∅) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) finSupp
∅) |
| 78 | 1, 2, 3 | cantnfs 8563 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵⟶𝐴 ∧ (𝐵 × {∅}) finSupp
∅))) |
| 79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐵 × {∅}) ∈ 𝑆 ↔ ((𝐵 × {∅}):𝐵⟶𝐴 ∧ (𝐵 × {∅}) finSupp
∅))) |
| 80 | 73, 77, 79 | mpbir2and 957 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐵 × {∅}) ∈ 𝑆) |
| 81 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅) |
| 82 | 1, 34, 36, 55, 80, 81 | cantnfval 8565 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) =
(seq𝜔((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑𝑜 (OrdIso( E , ∅)‘𝑘)) ·𝑜 ((𝐵 ×
{∅})‘(OrdIso( E , ∅)‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E ,
∅))) |
| 83 | | we0 5109 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ E We
∅ |
| 84 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ OrdIso( E
, ∅) = OrdIso( E , ∅) |
| 85 | 84 | oien 8443 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∅
∈ V ∧ E We ∅) → dom OrdIso( E , ∅) ≈
∅) |
| 86 | 74, 83, 85 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ dom
OrdIso( E , ∅) ≈ ∅ |
| 87 | | en0 8019 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (dom
OrdIso( E , ∅) ≈ ∅ ↔ dom OrdIso( E , ∅) =
∅) |
| 88 | 86, 87 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
OrdIso( E , ∅) = ∅ |
| 89 | 88 | fveq2i 6194 |
. . . . . . . . . . . . . . . . . . 19
⊢
(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅)‘dom OrdIso( E , ∅)) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅)‘∅) |
| 90 | 81 | seqom0g 7551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∈ V → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅)‘∅) = ∅) |
| 91 | 74, 90 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅)‘∅) = ∅ |
| 92 | 89, 91 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
∅)‘𝑘))
·𝑜 ((𝐵 × {∅})‘(OrdIso( E ,
∅)‘𝑘)))
+𝑜 𝑧)),
∅)‘dom OrdIso( E , ∅)) = ∅ |
| 93 | 82, 92 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) =
∅) |
| 94 | 14 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵)) |
| 95 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵) → (𝐴 CNF 𝐵) Fn 𝑆) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → (𝐴 CNF 𝐵) Fn 𝑆) |
| 97 | | fnfvelrn 6356 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 CNF 𝐵) Fn 𝑆 ∧ (𝐵 × {∅}) ∈ 𝑆) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵)) |
| 98 | 96, 80, 97 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) ∈ ran (𝐴 CNF 𝐵)) |
| 99 | 93, 98 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → ∅ ∈ ran (𝐴 CNF 𝐵)) |
| 100 | 33, 51, 99 | pm2.61ne 2879 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑡 ∈ (𝐴 ↑𝑜 𝐵) ∧ 𝑡 ⊆ ran (𝐴 CNF 𝐵))) → 𝑡 ∈ ran (𝐴 CNF 𝐵)) |
| 101 | 100 | expr 643 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → (𝑡 ⊆ ran (𝐴 CNF 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
| 102 | 32, 101 | sylbid 230 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ (𝐴 ↑𝑜 𝐵)) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
| 103 | 102 | ex 450 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
| 104 | 103 | com23 86 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵)) → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
| 105 | 104 | a2i 14 |
. . . . . . . . . 10
⊢ ((𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
| 106 | 105 | a1i 11 |
. . . . . . . . 9
⊢ (𝑡 ∈ On → ((𝜑 → ∀𝑦 ∈ 𝑡 (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))) |
| 107 | 24, 106 | syl5bi 232 |
. . . . . . . 8
⊢ (𝑡 ∈ On → (∀𝑦 ∈ 𝑡 (𝜑 → (𝑦 ∈ (𝐴 ↑𝑜 𝐵) → 𝑦 ∈ ran (𝐴 CNF 𝐵))) → (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))))) |
| 108 | 23, 107 | tfis2 7056 |
. . . . . . 7
⊢ (𝑡 ∈ On → (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
| 109 | 108 | com3l 89 |
. . . . . 6
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → (𝑡 ∈ On → 𝑡 ∈ ran (𝐴 CNF 𝐵)))) |
| 110 | 19, 109 | mpdd 43 |
. . . . 5
⊢ (𝜑 → (𝑡 ∈ (𝐴 ↑𝑜 𝐵) → 𝑡 ∈ ran (𝐴 CNF 𝐵))) |
| 111 | 110 | ssrdv 3609 |
. . . 4
⊢ (𝜑 → (𝐴 ↑𝑜 𝐵) ⊆ ran (𝐴 CNF 𝐵)) |
| 112 | 16, 111 | eqssd 3620 |
. . 3
⊢ (𝜑 → ran (𝐴 CNF 𝐵) = (𝐴 ↑𝑜 𝐵)) |
| 113 | | dffo2 6119 |
. . 3
⊢ ((𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑𝑜 𝐵) ↔ ((𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑𝑜 𝐵) ∧ ran (𝐴 CNF 𝐵) = (𝐴 ↑𝑜 𝐵))) |
| 114 | 14, 112, 113 | sylanbrc 698 |
. 2
⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑𝑜 𝐵)) |
| 115 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝐴 ∈ On) |
| 116 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝐵 ∈ On) |
| 117 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → (𝑥‘𝑧) = (𝑥‘𝑡)) |
| 118 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → (𝑦‘𝑧) = (𝑦‘𝑡)) |
| 119 | 117, 118 | eleq12d 2695 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ↔ (𝑥‘𝑡) ∈ (𝑦‘𝑡))) |
| 120 | | eleq1 2689 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑤 ↔ 𝑡 ∈ 𝑤)) |
| 121 | 120 | imbi1d 331 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 122 | 121 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑡 → (∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 123 | 119, 122 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑡 → (((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))) |
| 124 | 123 | cbvrexv 3172 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))) |
| 125 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥‘𝑡) = (𝑢‘𝑡)) |
| 126 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑣 → (𝑦‘𝑡) = (𝑣‘𝑡)) |
| 127 | | eleq12 2691 |
. . . . . . . . . . . 12
⊢ (((𝑥‘𝑡) = (𝑢‘𝑡) ∧ (𝑦‘𝑡) = (𝑣‘𝑡)) → ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ↔ (𝑢‘𝑡) ∈ (𝑣‘𝑡))) |
| 128 | 125, 126,
127 | syl2an 494 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ↔ (𝑢‘𝑡) ∈ (𝑣‘𝑡))) |
| 129 | | fveq1 6190 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (𝑥‘𝑤) = (𝑢‘𝑤)) |
| 130 | | fveq1 6190 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑣 → (𝑦‘𝑤) = (𝑣‘𝑤)) |
| 131 | 129, 130 | eqeqan12d 2638 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑥‘𝑤) = (𝑦‘𝑤) ↔ (𝑢‘𝑤) = (𝑣‘𝑤))) |
| 132 | 131 | imbi2d 330 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ((𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))) |
| 133 | 132 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)) ↔ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))) |
| 134 | 128, 133 | anbi12d 747 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
| 135 | 134 | rexbidv 3052 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∃𝑡 ∈ 𝐵 ((𝑥‘𝑡) ∈ (𝑦‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
| 136 | 124, 135 | syl5bb 272 |
. . . . . . . 8
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))) ↔ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤))))) |
| 137 | 136 | cbvopabv 4722 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑢, 𝑣〉 ∣ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))} |
| 138 | 4, 137 | eqtri 2644 |
. . . . . 6
⊢ 𝑇 = {〈𝑢, 𝑣〉 ∣ ∃𝑡 ∈ 𝐵 ((𝑢‘𝑡) ∈ (𝑣‘𝑡) ∧ ∀𝑤 ∈ 𝐵 (𝑡 ∈ 𝑤 → (𝑢‘𝑤) = (𝑣‘𝑤)))} |
| 139 | | simprll 802 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓 ∈ 𝑆) |
| 140 | | simprlr 803 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑔 ∈ 𝑆) |
| 141 | | simprr 796 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → 𝑓𝑇𝑔) |
| 142 | | eqid 2622 |
. . . . . 6
⊢ ∪ {𝑐
∈ 𝐵 ∣ (𝑓‘𝑐) ∈ (𝑔‘𝑐)} = ∪ {𝑐 ∈ 𝐵 ∣ (𝑓‘𝑐) ∈ (𝑔‘𝑐)} |
| 143 | | eqid 2622 |
. . . . . 6
⊢ OrdIso( E
, (𝑔 supp ∅)) =
OrdIso( E , (𝑔 supp
∅)) |
| 144 | | eqid 2622 |
. . . . . 6
⊢
seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
(𝑔 supp
∅))‘𝑘))
·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅) = seq𝜔((𝑘 ∈ V, 𝑡 ∈ V ↦ (((𝐴 ↑𝑜 (OrdIso( E ,
(𝑔 supp
∅))‘𝑘))
·𝑜 (𝑔‘(OrdIso( E , (𝑔 supp ∅))‘𝑘))) +𝑜 𝑡)), ∅) |
| 145 | 1, 115, 116, 138, 139, 140, 141, 142, 143, 144 | cantnflem1 8586 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔)) |
| 146 | | fvex 6201 |
. . . . . 6
⊢ ((𝐴 CNF 𝐵)‘𝑔) ∈ V |
| 147 | 146 | epelc 5031 |
. . . . 5
⊢ (((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔) ↔ ((𝐴 CNF 𝐵)‘𝑓) ∈ ((𝐴 CNF 𝐵)‘𝑔)) |
| 148 | 145, 147 | sylibr 224 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆) ∧ 𝑓𝑇𝑔)) → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)) |
| 149 | 148 | expr 643 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ 𝑆 ∧ 𝑔 ∈ 𝑆)) → (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))) |
| 150 | 149 | ralrimivva 2971 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ 𝑆 ∀𝑔 ∈ 𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔))) |
| 151 | | soisoi 6578 |
. 2
⊢ (((𝑇 Or 𝑆 ∧ E Po (𝐴 ↑𝑜 𝐵)) ∧ ((𝐴 CNF 𝐵):𝑆–onto→(𝐴 ↑𝑜 𝐵) ∧ ∀𝑓 ∈ 𝑆 ∀𝑔 ∈ 𝑆 (𝑓𝑇𝑔 → ((𝐴 CNF 𝐵)‘𝑓) E ((𝐴 CNF 𝐵)‘𝑔)))) → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵))) |
| 152 | 5, 13, 114, 150, 151 | syl22anc 1327 |
1
⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑𝑜 𝐵))) |