MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspss Structured version   Visualization version   GIF version

Theorem sspss 3706
Description: Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.)
Assertion
Ref Expression
sspss (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sspss
StepHypRef Expression
1 dfpss2 3692 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴 = 𝐵))
21simplbi2 655 . . . 4 (𝐴𝐵 → (¬ 𝐴 = 𝐵𝐴𝐵))
32con1d 139 . . 3 (𝐴𝐵 → (¬ 𝐴𝐵𝐴 = 𝐵))
43orrd 393 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
5 pssss 3702 . . 3 (𝐴𝐵𝐴𝐵)
6 eqimss 3657 . . 3 (𝐴 = 𝐵𝐴𝐵)
75, 6jaoi 394 . 2 ((𝐴𝐵𝐴 = 𝐵) → 𝐴𝐵)
84, 7impbii 199 1 (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383   = wceq 1483  wss 3574  wpss 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ne 2795  df-in 3581  df-ss 3588  df-pss 3590
This theorem is referenced by:  sspsstri  3709  sspsstr  3712  psssstr  3713  ordsseleq  5752  sorpssuni  6946  sorpssint  6947  ssnnfi  8179  ackbij1b  9061  fin23lem40  9173  zorng  9326  psslinpr  9853  suplem2pr  9875  ressval3d  15937  mrissmrcd  16300  pgpssslw  18029  pgpfac1lem5  18478  idnghm  22547  dfon2lem4  31691  finminlem  32312  lkrss2N  34456  dvh3dim3N  36738
  Copyright terms: Public domain W3C validator