MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4 Structured version   Visualization version   GIF version

Theorem minvecolem4 27736
Description: Lemma for minveco 27740. The convergent point of the cauchy sequence 𝐹 attains the minimum distance, and so is closer to 𝐴 than any other point in 𝑌. (Contributed by Mario Carneiro, 7-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
minveco.t 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
Assertion
Ref Expression
minvecolem4 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝐹   𝑛,𝐽,𝑥,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑛,𝑥,𝑦   𝑥,𝑅   𝑆,𝑛,𝑥,𝑦   𝐴,𝑛,𝑥,𝑦   𝐷,𝑛,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑇,𝑛   𝑛,𝑋,𝑥   𝑛,𝑌,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑇(𝑥,𝑦)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . 6 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 27669 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
3 minveco.x . . . . . . 7 𝑋 = (BaseSet‘𝑈)
4 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
53, 4imsxmet 27547 . . . . . 6 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
61, 2, 53syl 18 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
7 minveco.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
87methaus 22325 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
9 lmfun 21185 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
106, 8, 93syl 18 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
11 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
12 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
13 minveco.y . . . . . 6 𝑌 = (BaseSet‘𝑊)
14 minveco.w . . . . . 6 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
15 minveco.a . . . . . 6 (𝜑𝐴𝑋)
16 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
17 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
18 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
19 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
203, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4a 27733 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
21 eqid 2622 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
22 nnuz 11723 . . . . . . 7 ℕ = (ℤ‘1)
23 fvex 6201 . . . . . . . . 9 (BaseSet‘𝑊) ∈ V
2413, 23eqeltri 2697 . . . . . . . 8 𝑌 ∈ V
2524a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
261, 2syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
277mopntop 22245 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
2826, 5, 273syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
29 elin 3796 . . . . . . . . . . . . 13 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
3014, 29sylib 208 . . . . . . . . . . . 12 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
3130simpld 475 . . . . . . . . . . 11 (𝜑𝑊 ∈ (SubSp‘𝑈))
32 eqid 2622 . . . . . . . . . . . 12 (SubSp‘𝑈) = (SubSp‘𝑈)
333, 13, 32sspba 27582 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3426, 31, 33syl2anc 693 . . . . . . . . . 10 (𝜑𝑌𝑋)
35 xmetres2 22166 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
366, 34, 35syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
37 eqid 2622 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3837mopntopon 22244 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
40 lmcl 21101 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4139, 20, 40syl2anc 693 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
42 1zzd 11408 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4321, 22, 25, 28, 41, 42, 18lmss 21102 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
44 eqid 2622 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4544, 7, 37metrest 22329 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
466, 34, 45syl2anc 693 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4746fveq2d 6195 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4847breqd 4664 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4943, 48bitrd 268 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5020, 49mpbird 247 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
51 funbrfv 6234 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5210, 50, 51sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5352, 41eqeltrd 2701 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
543, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4b 27734 . . . . . 6 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
553, 11, 12, 4imsdval 27541 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5626, 15, 54, 55syl3anc 1326 . . . . 5 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
5756adantr 481 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
583, 4imsmet 27546 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
591, 2, 583syl 18 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
60 metcl 22137 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6159, 15, 54, 60syl3anc 1326 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
6261adantr 481 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ)
633, 11, 12, 13, 1, 14, 15, 4, 7, 16, 17, 18, 19minvecolem4c 27735 . . . . . 6 (𝜑𝑆 ∈ ℝ)
6463adantr 481 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ∈ ℝ)
6526adantr 481 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6615adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
6734sselda 3603 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
683, 11nvmcl 27501 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
6965, 66, 67, 68syl3anc 1326 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
703, 12nvcl 27516 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7165, 69, 70syl2anc 693 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
7263, 61ltnled 10184 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ ¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
73 eqid 2622 . . . . . . . . . . 11 (ℤ‘((⌊‘𝑇) + 1)) = (ℤ‘((⌊‘𝑇) + 1))
746adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐷 ∈ (∞Met‘𝑋))
75 minveco.t . . . . . . . . . . . . . . 15 𝑇 = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
7661, 63readdcld 10069 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ)
7776rehalfcld 11279 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
7877resqcld 13035 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
7963resqcld 13035 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆↑2) ∈ ℝ)
8078, 79resubcld 10458 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8180adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
8263, 61, 63ltadd1d 10620 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
8363recnd 10068 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆 ∈ ℂ)
84832timesd 11275 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 · 𝑆) = (𝑆 + 𝑆))
8584breq1d 4663 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝑆 + 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
86 2re 11090 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
87 2pos 11112 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
8886, 87pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℝ ∧ 0 < 2)
8988a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
90 ltmuldiv2 10897 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9163, 76, 89, 90syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((2 · 𝑆) < ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
9282, 85, 913bitr2d 296 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
933, 11, 12, 13, 1, 14, 15, 4, 7, 16minvecolem1 27730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
9493simp3d 1075 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
9593simp1d 1073 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ⊆ ℝ)
9693simp2d 1074 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑅 ≠ ∅)
97 0re 10040 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℝ
98 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
9998ralbidv 2986 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10099rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . 24 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10197, 94, 100sylancr 695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
10297a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ ℝ)
103 infregelb 11007 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10495, 96, 101, 102, 103syl31anc 1329 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
10594, 104mpbird 247 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
106105, 17syl6breqr 4695 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝑆)
107 metge0 22150 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋) → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10859, 15, 54, 107syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ≤ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)))
10961, 63, 108, 106addge0d 10603 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆))
110 divge0 10892 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ 0 ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11176, 109, 89, 110syl21anc 1325 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
11263, 77, 106, 111lt2sqd 13043 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 < (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ (𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
11379, 78posdifd 10614 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑆↑2) < ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
11492, 112, 1133bitrd 294 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ↔ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
115114biimpa 501 . . . . . . . . . . . . . . . . 17 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
11681, 115elrpd 11869 . . . . . . . . . . . . . . . 16 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ+)
117116rpreccld 11882 . . . . . . . . . . . . . . 15 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∈ ℝ+)
11875, 117syl5eqel 2705 . . . . . . . . . . . . . 14 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝑇 ∈ ℝ+)
119118rprege0d 11879 . . . . . . . . . . . . 13 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇))
120 flge0nn0 12621 . . . . . . . . . . . . 13 ((𝑇 ∈ ℝ ∧ 0 ≤ 𝑇) → (⌊‘𝑇) ∈ ℕ0)
121 nn0p1nn 11332 . . . . . . . . . . . . 13 ((⌊‘𝑇) ∈ ℕ0 → ((⌊‘𝑇) + 1) ∈ ℕ)
122119, 120, 1213syl 18 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℕ)
123122nnzd 11481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → ((⌊‘𝑇) + 1) ∈ ℤ)
12450, 52breqtrrd 4681 . . . . . . . . . . . 12 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
125124adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐹(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐹))
12615adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → 𝐴𝑋)
12777adantr 481 . . . . . . . . . . . 12 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
128127rexrd 10089 . . . . . . . . . . 11 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ*)
129 simpll 790 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝜑)
130 eluznn 11758 . . . . . . . . . . . . . . . 16 ((((⌊‘𝑇) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
131122, 130sylan 488 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℕ)
13259adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13315adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → 𝐴𝑋)
13418, 34fssd 6057 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:ℕ⟶𝑋)
135134ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
136 metcl 22137 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
137132, 133, 135, 136syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
138129, 131, 137syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ∈ ℝ)
139138resqcld 13035 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ∈ ℝ)
14063ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑆 ∈ ℝ)
141140resqcld 13035 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝑆↑2) ∈ ℝ)
142131nnrecred 11066 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ∈ ℝ)
143141, 142readdcld 10069 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
14478ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ∈ ℝ)
145129, 131, 19syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
146118adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ+)
147146rpred 11872 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ∈ ℝ)
148 reflcl 12597 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → (⌊‘𝑇) ∈ ℝ)
149 peano2re 10209 . . . . . . . . . . . . . . . . . 18 ((⌊‘𝑇) ∈ ℝ → ((⌊‘𝑇) + 1) ∈ ℝ)
150147, 148, 1493syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ∈ ℝ)
151131nnred 11035 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑛 ∈ ℝ)
152 fllep1 12602 . . . . . . . . . . . . . . . . . 18 (𝑇 ∈ ℝ → 𝑇 ≤ ((⌊‘𝑇) + 1))
153147, 152syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇 ≤ ((⌊‘𝑇) + 1))
154 eluzle 11700 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1)) → ((⌊‘𝑇) + 1) ≤ 𝑛)
155154adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((⌊‘𝑇) + 1) ≤ 𝑛)
156147, 150, 151, 153, 155letrd 10194 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 𝑇𝑛)
15775, 156syl5eqbrr 4689 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛)
158 1red 10055 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 1 ∈ ℝ)
15980ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ)
160115adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
161131nngt0d 11064 . . . . . . . . . . . . . . . 16 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 < 𝑛)
162 lediv23 10915 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ ((((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)) ∈ ℝ ∧ 0 < (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
163158, 159, 160, 151, 161, 162syl122anc 1335 . . . . . . . . . . . . . . 15 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))) ≤ 𝑛 ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
164157, 163mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2)))
165141, 142, 144leaddsub2d 10629 . . . . . . . . . . . . . 14 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) ↔ (1 / 𝑛) ≤ (((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2) − (𝑆↑2))))
166164, 165mpbird 247 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝑆↑2) + (1 / 𝑛)) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
167139, 143, 144, 145, 166letrd 10194 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2))
16877ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ∈ ℝ)
169 metge0 22150 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
170132, 133, 135, 169syl3anc 1326 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
171129, 131, 170syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (𝐴𝐷(𝐹𝑛)))
172111ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → 0 ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
173138, 168, 171, 172le2sqd 13044 . . . . . . . . . . . 12 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → ((𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2) ↔ ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)↑2)))
174167, 173mpbird 247 . . . . . . . . . . 11 (((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ∧ 𝑛 ∈ (ℤ‘((⌊‘𝑇) + 1))) → (𝐴𝐷(𝐹𝑛)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17573, 7, 74, 123, 125, 126, 128, 174lmle 23099 . . . . . . . . . 10 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2))
17661, 63, 61leadd2d 10622 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
17761recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℂ)
1781772timesd 11275 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) = ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))))
179178breq1d 4663 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆)))
180 lemuldiv2 10904 . . . . . . . . . . . . . 14 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18188, 180mp3an3 1413 . . . . . . . . . . . . 13 (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ∈ ℝ ∧ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ∈ ℝ) → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
18261, 76, 181syl2anc 693 . . . . . . . . . . . 12 (𝜑 → ((2 · (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) ≤ ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
183176, 179, 1823bitr2d 296 . . . . . . . . . . 11 (𝜑 → ((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 ↔ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)))
184183biimpar 502 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (((𝐴𝐷((⇝𝑡𝐽)‘𝐹)) + 𝑆) / 2)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
185175, 184syldan 487 . . . . . . . . 9 ((𝜑𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹))) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
186185ex 450 . . . . . . . 8 (𝜑 → (𝑆 < (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
18772, 186sylbird 250 . . . . . . 7 (𝜑 → (¬ (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆))
188187pm2.18d 124 . . . . . 6 (𝜑 → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
189188adantr 481 . . . . 5 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ 𝑆)
19095adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑅 ⊆ ℝ)
191101adantr 481 . . . . . . 7 ((𝜑𝑦𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
192 simpr 477 . . . . . . . . 9 ((𝜑𝑦𝑌) → 𝑦𝑌)
193 fvex 6201 . . . . . . . . 9 (𝑁‘(𝐴𝑀𝑦)) ∈ V
194 eqid 2622 . . . . . . . . . 10 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
195194elrnmpt1 5374 . . . . . . . . 9 ((𝑦𝑌 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ V) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
196192, 193, 195sylancl 694 . . . . . . . 8 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
197196, 16syl6eleqr 2712 . . . . . . 7 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅)
198 infrelb 11008 . . . . . . 7 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀𝑦)) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
199190, 191, 197, 198syl3anc 1326 . . . . . 6 ((𝜑𝑦𝑌) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀𝑦)))
20017, 199syl5eqbr 4688 . . . . 5 ((𝜑𝑦𝑌) → 𝑆 ≤ (𝑁‘(𝐴𝑀𝑦)))
20162, 64, 71, 189, 200letrd 10194 . . . 4 ((𝜑𝑦𝑌) → (𝐴𝐷((⇝𝑡𝐽)‘𝐹)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20257, 201eqbrtrrd 4677 . . 3 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
203202ralrimiva 2966 . 2 (𝜑 → ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦)))
204 oveq2 6658 . . . . . 6 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝐴𝑀𝑥) = (𝐴𝑀((⇝𝑡𝐽)‘𝐹)))
205204fveq2d 6195 . . . . 5 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))))
206205breq1d 4663 . . . 4 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
207206ralbidv 2986 . . 3 (𝑥 = ((⇝𝑡𝐽)‘𝐹) → (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))))
208207rspcev 3309 . 2 ((((⇝𝑡𝐽)‘𝐹) ∈ 𝑌 ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀((⇝𝑡𝐽)‘𝐹))) ≤ (𝑁‘(𝐴𝑀𝑦))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
20953, 203, 208syl2anc 693 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729   × cxp 5112  ran crn 5115  cres 5116  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  infcinf 8347  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cuz 11687  +crp 11832  cfl 12591  cexp 12860  t crest 16081  ∞Metcxmt 19731  Metcme 19732  MetOpencmopn 19736  Topctop 20698  TopOnctopon 20715  𝑡clm 21030  Hauscha 21112  NrmCVeccnv 27439  BaseSetcba 27441  𝑣 cnsb 27444  normCVcnmcv 27445  IndMetcims 27446  SubSpcss 27576  CPreHilOLDccphlo 27667  CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lm 21033  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-ph 27668  df-cbn 27719
This theorem is referenced by:  minvecolem5  27737
  Copyright terms: Public domain W3C validator