MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2 Structured version   Visualization version   GIF version

Theorem minvecolem2 27731
Description: Lemma for minveco 27740. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minvecolem2.1 (𝜑𝐵 ∈ ℝ)
minvecolem2.2 (𝜑 → 0 ≤ 𝐵)
minvecolem2.3 (𝜑𝐾𝑌)
minvecolem2.4 (𝜑𝐿𝑌)
minvecolem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minvecolem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minvecolem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝐿   𝑦,𝑀   𝑦,𝑁   𝜑,𝑦   𝑦,𝑆   𝑦,𝐴   𝑦,𝐷   𝑦,𝑈   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem2
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 11097 . . . . . 6 4 ∈ ℝ
2 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
3 minveco.x . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
4 minveco.m . . . . . . . . . . 11 𝑀 = ( −𝑣𝑈)
5 minveco.n . . . . . . . . . . 11 𝑁 = (normCV𝑈)
6 minveco.y . . . . . . . . . . 11 𝑌 = (BaseSet‘𝑊)
7 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 minveco.a . . . . . . . . . . 11 (𝜑𝐴𝑋)
10 minveco.d . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
11 minveco.j . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
12 minveco.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 27730 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1413simp1d 1073 . . . . . . . . 9 (𝜑𝑅 ⊆ ℝ)
1513simp2d 1074 . . . . . . . . 9 (𝜑𝑅 ≠ ∅)
16 0re 10040 . . . . . . . . . 10 0 ∈ ℝ
1713simp3d 1075 . . . . . . . . . 10 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
18 breq1 4656 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1918ralbidv 2986 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2019rspcev 3309 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2116, 17, 20sylancr 695 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
22 infrecl 11005 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2314, 15, 21, 22syl3anc 1326 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
242, 23syl5eqel 2705 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
2524resqcld 13035 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
26 remulcl 10021 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
271, 25, 26sylancr 695 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
28 phnv 27669 . . . . . . . . 9 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
297, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
303, 10imsmet 27546 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3129, 30syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
32 inss1 3833 . . . . . . . . . 10 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
3332, 8sseldi 3601 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
34 eqid 2622 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
353, 6, 34sspba 27582 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3629, 33, 35syl2anc 693 . . . . . . . 8 (𝜑𝑌𝑋)
37 minvecolem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
3836, 37sseldd 3604 . . . . . . 7 (𝜑𝐾𝑋)
39 minvecolem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
4036, 39sseldd 3604 . . . . . . 7 (𝜑𝐿𝑋)
41 metcl 22137 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
4231, 38, 40, 41syl3anc 1326 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
4342resqcld 13035 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
4427, 43readdcld 10069 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
45 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
46 halfcl 11257 . . . . . . . . . . . . 13 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
4745, 46mp1i 13 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℂ)
48 eqid 2622 . . . . . . . . . . . . . . 15 ( +𝑣𝑈) = ( +𝑣𝑈)
49 eqid 2622 . . . . . . . . . . . . . . 15 ( +𝑣𝑊) = ( +𝑣𝑊)
506, 48, 49, 34sspgval 27584 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5129, 33, 37, 39, 50syl22anc 1327 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5234sspnv 27581 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
5329, 33, 52syl2anc 693 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ NrmCVec)
546, 49nvgcl 27475 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝐾𝑌𝐿𝑌) → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5553, 37, 39, 54syl3anc 1326 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5651, 55eqeltrrd 2702 . . . . . . . . . . . 12 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)
57 eqid 2622 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
58 eqid 2622 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
596, 57, 58, 34sspsval 27586 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ ((1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
6029, 33, 47, 56, 59syl22anc 1327 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
616, 58nvscl 27481 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6253, 47, 56, 61syl3anc 1326 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6360, 62eqeltrrd 2702 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6436, 63sseldd 3604 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)
653, 4nvmcl 27501 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋) → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
6629, 9, 64, 65syl3anc 1326 . . . . . . . 8 (𝜑 → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
673, 5nvcl 27516 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6829, 66, 67syl2anc 693 . . . . . . 7 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6968resqcld 13035 . . . . . 6 (𝜑 → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ)
70 remulcl 10021 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
711, 69, 70sylancr 695 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
7271, 43readdcld 10069 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
73 minvecolem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
7425, 73readdcld 10069 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
75 remulcl 10021 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
761, 74, 75sylancr 695 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
7716a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 11007 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7914, 15, 21, 77, 78syl31anc 1329 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8017, 79mpbird 247 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 2syl6breqr 4695 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2622 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
83 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝐴𝑀𝑦) = (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
8483fveq2d 6195 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝑁‘(𝐴𝑀𝑦)) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
8584eqeq2d 2632 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
8685rspcev 3309 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
8763, 82, 86sylancl 694 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
88 eqid 2622 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
89 fvex 6201 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀𝑦)) ∈ V
9088, 89elrnmpti 5376 . . . . . . . . . . 11 ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
9187, 90sylibr 224 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
9291, 12syl6eleqr 2712 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅)
93 infrelb 11008 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
9414, 21, 92, 93syl3anc 1326 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
952, 94syl5eqbr 4688 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
96 le2sq2 12939 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
9724, 81, 68, 95, 96syl22anc 1327 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
98 4pos 11116 . . . . . . . . 9 0 < 4
991, 98pm3.2i 471 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
100 lemul2 10876 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10199, 100mp3an3 1413 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10225, 69, 101syl2anc 693 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10397, 102mpbid 222 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
10427, 71, 43, 103leadd1dd 10641 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
105 metcl 22137 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10631, 9, 38, 105syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
107106resqcld 13035 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
108 metcl 22137 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10931, 9, 40, 108syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
110109resqcld 13035 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
111 minvecolem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
112 minvecolem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
113107, 110, 74, 74, 111, 112le2addd 10646 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11474recnd 10068 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1151142timesd 11275 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
116113, 115breqtrrd 4681 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
117107, 110readdcld 10069 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
118 2re 11090 . . . . . . . 8 2 ∈ ℝ
119 remulcl 10021 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120118, 74, 119sylancr 695 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
121 2pos 11112 . . . . . . . . 9 0 < 2
122118, 121pm3.2i 471 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
123 lemul2 10876 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124122, 123mp3an3 1413 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125117, 120, 124syl2anc 693 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
126116, 125mpbid 222 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1273, 4nvmcl 27501 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝑀𝐾) ∈ 𝑋)
12829, 9, 38, 127syl3anc 1326 . . . . . . 7 (𝜑 → (𝐴𝑀𝐾) ∈ 𝑋)
1293, 4nvmcl 27501 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝑀𝐿) ∈ 𝑋)
13029, 9, 40, 129syl3anc 1326 . . . . . . 7 (𝜑 → (𝐴𝑀𝐿) ∈ 𝑋)
1313, 48, 4, 5phpar2 27678 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑀𝐾) ∈ 𝑋 ∧ (𝐴𝑀𝐿) ∈ 𝑋) → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
1327, 128, 130, 131syl3anc 1326 . . . . . 6 (𝜑 → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
133 2cn 11091 . . . . . . . . . 10 2 ∈ ℂ
13468recnd 10068 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ)
135 sqmul 12926 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
136133, 134, 135sylancr 695 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
137 sq2 12960 . . . . . . . . . 10 (2↑2) = 4
138137oveq1i 6660 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
139136, 138syl6eq 2672 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
140133a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
1413, 57, 5nvs 27518 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
14229, 140, 66, 141syl3anc 1326 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
143 0le2 11111 . . . . . . . . . . . . 13 0 ≤ 2
144 absid 14036 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
145118, 143, 144mp2an 708 . . . . . . . . . . . 12 (abs‘2) = 2
146145oveq1i 6660 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
147142, 146syl6eq 2672 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
1483, 4, 57nvmdi 27503 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)) → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
14929, 140, 9, 64, 148syl13anc 1328 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1503, 48, 57nv2 27487 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
15129, 9, 150syl2anc 693 . . . . . . . . . . . . 13 (𝜑 → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
152 2ne0 11113 . . . . . . . . . . . . . . . . 17 2 ≠ 0
153133, 152recidi 10756 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
154153oveq1i 6660 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))
1553, 48nvgcl 27475 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝐾𝑋𝐿𝑋) → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
15629, 38, 40, 155syl3anc 1326 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
1573, 57nvsid 27482 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
15829, 156, 157syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
159154, 158syl5eq 2668 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
1603, 57nvsass 27483 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
16129, 140, 47, 156, 160syl13anc 1328 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
162159, 161eqtr3d 2658 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑈)𝐿) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
163151, 162oveq12d 6668 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1643, 48, 4nvaddsub4 27512 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
16529, 9, 9, 38, 40, 164syl122anc 1335 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
166149, 163, 1653eqtr2d 2662 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
167166fveq2d 6195 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
168147, 167eqtr3d 2658 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
169168oveq1d 6665 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
170139, 169eqtr3d 2658 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
1713, 4, 5, 10imsdval 27541 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐿𝑋𝐾𝑋) → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
17229, 40, 38, 171syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
173 metsym 22155 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
17431, 38, 40, 173syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
1753, 4nvnnncan1 27502 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐾𝑋𝐿𝑋)) → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
17629, 9, 38, 40, 175syl13anc 1328 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
177176fveq2d 6195 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))) = (𝑁‘(𝐿𝑀𝐾)))
178172, 174, 1773eqtr4d 2666 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))))
179178oveq1d 6665 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2))
180170, 179oveq12d 6668 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)))
1813, 4, 5, 10imsdval 27541 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
18229, 9, 38, 181syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
183182oveq1d 6665 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴𝑀𝐾))↑2))
1843, 4, 5, 10imsdval 27541 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
18529, 9, 40, 184syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
186185oveq1d 6665 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴𝑀𝐿))↑2))
187183, 186oveq12d 6668 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2)))
188187oveq2d 6666 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
189132, 180, 1883eqtr4d 2666 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
190 2t2e4 11177 . . . . . . 7 (2 · 2) = 4
191190oveq1i 6660 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
192140, 140, 114mulassd 10063 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
193191, 192syl5eqr 2670 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
194126, 189, 1933brtr4d 4685 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
19544, 72, 76, 104, 194letrd 10194 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
196 4cn 11098 . . . . 5 4 ∈ ℂ
197196a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
19825recnd 10068 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
19973recnd 10068 . . . 4 (𝜑𝐵 ∈ ℂ)
200197, 198, 199adddid 10064 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
201195, 200breqtrd 4679 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
202 remulcl 10021 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2031, 73, 202sylancr 695 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
20443, 203, 27leadd2d 10622 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
205201, 204mpbird 247 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cin 3573  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  2c2 11070  4c4 11072  cexp 12860  abscabs 13974  Metcme 19732  MetOpencmopn 19736  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  𝑣 cnsb 27444  normCVcnmcv 27445  IndMetcims 27446  SubSpcss 27576  CPreHilOLDccphlo 27667  CBanccbn 27718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-xmet 19739  df-met 19740  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-ssp 27577  df-ph 27668  df-cbn 27719
This theorem is referenced by:  minvecolem3  27732  minvecolem7  27739
  Copyright terms: Public domain W3C validator