![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrest | Structured version Visualization version GIF version |
Description: If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
ssrest | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐽 ↾t 𝐴)) | |
2 | ssrexv 3667 | . . . . . 6 ⊢ (𝐽 ⊆ 𝐾 → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
3 | 2 | ad2antlr 763 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴) → ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
4 | n0i 3920 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → ¬ (𝐽 ↾t 𝐴) = ∅) | |
5 | restfn 16085 | . . . . . . . . . 10 ⊢ ↾t Fn (V × V) | |
6 | fndm 5990 | . . . . . . . . . 10 ⊢ ( ↾t Fn (V × V) → dom ↾t = (V × V)) | |
7 | 5, 6 | ax-mp 5 | . . . . . . . . 9 ⊢ dom ↾t = (V × V) |
8 | 7 | ndmov 6818 | . . . . . . . 8 ⊢ (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ∅) |
9 | 4, 8 | nsyl2 142 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 ↾t 𝐴) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝐽 ∈ V ∧ 𝐴 ∈ V)) |
11 | elrest 16088 | . . . . . 6 ⊢ ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐽 𝑥 = (𝑦 ∩ 𝐴))) |
13 | simpll 790 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐾 ∈ 𝑉) | |
14 | 10 | simprd 479 | . . . . . 6 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝐴 ∈ V) |
15 | elrest 16088 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) | |
16 | 13, 14, 15 | syl2anc 693 | . . . . 5 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐾 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝐾 𝑥 = (𝑦 ∩ 𝐴))) |
17 | 3, 12, 16 | 3imtr4d 283 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
18 | 1, 17 | mpd 15 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ (𝐾 ↾t 𝐴)) |
19 | 18 | ex 450 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ (𝐾 ↾t 𝐴))) |
20 | 19 | ssrdv 3609 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐾) → (𝐽 ↾t 𝐴) ⊆ (𝐾 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 × cxp 5112 dom cdm 5114 Fn wfn 5883 (class class class)co 6650 ↾t crest 16081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-rest 16083 |
This theorem is referenced by: 1stcrest 21256 kgencmp 21348 kgencmp2 21349 kgen2ss 21358 ssufl 21722 cnfsmf 40949 smfsssmf 40952 |
Copyright terms: Public domain | W3C validator |