MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgen2ss Structured version   Visualization version   GIF version

Theorem kgen2ss 21358
Description: The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
kgen2ss ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))

Proof of Theorem kgen2ss
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐽 ∈ (TopOn‘𝑋))
2 elpwi 4168 . . . . . . . . 9 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3 resttopon 20965 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
41, 2, 3syl2an 494 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
5 simp2 1062 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ (TopOn‘𝑋))
6 resttopon 20965 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
75, 2, 6syl2an 494 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐾t 𝑘) ∈ (TopOn‘𝑘))
8 toponuni 20719 . . . . . . . . . 10 ((𝐾t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 = (𝐾t 𝑘))
97, 8syl 17 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝑘 = (𝐾t 𝑘))
109fveq2d 6195 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (TopOn‘𝑘) = (TopOn‘ (𝐾t 𝑘)))
114, 10eleqtrd 2703 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)))
12 simpl2 1065 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ (TopOn‘𝑋))
13 topontop 20718 . . . . . . . . 9 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
1412, 13syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐾 ∈ Top)
15 simpl3 1066 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → 𝐽𝐾)
16 ssrest 20980 . . . . . . . 8 ((𝐾 ∈ Top ∧ 𝐽𝐾) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
1714, 15, 16syl2anc 693 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (𝐽t 𝑘) ⊆ (𝐾t 𝑘))
18 eqid 2622 . . . . . . . . . 10 (𝐾t 𝑘) = (𝐾t 𝑘)
1918sscmp 21208 . . . . . . . . 9 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐾t 𝑘) ∈ Comp ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → (𝐽t 𝑘) ∈ Comp)
20193com23 1271 . . . . . . . 8 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘) ∧ (𝐾t 𝑘) ∈ Comp) → (𝐽t 𝑘) ∈ Comp)
21203expia 1267 . . . . . . 7 (((𝐽t 𝑘) ∈ (TopOn‘ (𝐾t 𝑘)) ∧ (𝐽t 𝑘) ⊆ (𝐾t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2211, 17, 21syl2anc 693 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐾t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Comp))
2317sseld 3602 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝑥𝑘) ∈ (𝐽t 𝑘) → (𝑥𝑘) ∈ (𝐾t 𝑘)))
2422, 23imim12d 81 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑘 ∈ 𝒫 𝑋) → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2524ralimdva 2962 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘))))
2625anim2d 589 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → ((𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
27 elkgen 21339 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
28273ad2ant1 1082 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
29 elkgen 21339 . . . 4 (𝐾 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
30293ad2ant2 1083 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐾) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐾t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐾t 𝑘)))))
3126, 28, 303imtr4d 283 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐾)))
3231ssrdv 3609 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715  Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-kgen 21337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator