| Step | Hyp | Ref
| Expression |
| 1 | | simpll 790 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑋 ∈ UFL) |
| 2 | | filfbas 21652 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ∈ (fBas‘𝑌)) |
| 3 | 2 | adantl 482 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑌)) |
| 4 | | filsspw 21655 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑓 ⊆ 𝒫 𝑌) |
| 5 | 4 | adantl 482 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑌) |
| 6 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑌 ⊆ 𝑋) |
| 7 | | sspwb 4917 |
. . . . . . . . 9
⊢ (𝑌 ⊆ 𝑋 ↔ 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 8 | 6, 7 | sylib 208 |
. . . . . . . 8
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝒫 𝑌 ⊆ 𝒫 𝑋) |
| 9 | 5, 8 | sstrd 3613 |
. . . . . . 7
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ 𝒫 𝑋) |
| 10 | | fbasweak 21669 |
. . . . . . 7
⊢ ((𝑓 ∈ (fBas‘𝑌) ∧ 𝑓 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ UFL) → 𝑓 ∈ (fBas‘𝑋)) |
| 11 | 3, 9, 1, 10 | syl3anc 1326 |
. . . . . 6
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ∈ (fBas‘𝑋)) |
| 12 | | fgcl 21682 |
. . . . . 6
⊢ (𝑓 ∈ (fBas‘𝑋) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → (𝑋filGen𝑓) ∈ (Fil‘𝑋)) |
| 14 | | ufli 21718 |
. . . . 5
⊢ ((𝑋 ∈ UFL ∧ (𝑋filGen𝑓) ∈ (Fil‘𝑋)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
| 15 | 1, 13, 14 | syl2anc 693 |
. . . 4
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑢 ∈ (UFil‘𝑋)(𝑋filGen𝑓) ⊆ 𝑢) |
| 16 | | ssfg 21676 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (fBas‘𝑋) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 17 | 11, 16 | syl 17 |
. . . . . . . . 9
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 18 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑋filGen𝑓)) |
| 19 | | simprr 796 |
. . . . . . . 8
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑋filGen𝑓) ⊆ 𝑢) |
| 20 | 18, 19 | sstrd 3613 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝑢) |
| 21 | | filtop 21659 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑌) → 𝑌 ∈ 𝑓) |
| 22 | 21 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑓) |
| 23 | 20, 22 | sseldd 3604 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ∈ 𝑢) |
| 24 | | simprl 794 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑢 ∈ (UFil‘𝑋)) |
| 25 | 6 | adantr 481 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑌 ⊆ 𝑋) |
| 26 | | trufil 21714 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑌 ⊆ 𝑋) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ↔ 𝑌 ∈ 𝑢)) |
| 28 | 23, 27 | mpbird 247 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑢 ↾t 𝑌) ∈ (UFil‘𝑌)) |
| 29 | 5 | adantr 481 |
. . . . . . 7
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ 𝒫 𝑌) |
| 30 | | restid2 16091 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑓 ∧ 𝑓 ⊆ 𝒫 𝑌) → (𝑓 ↾t 𝑌) = 𝑓) |
| 31 | 22, 29, 30 | syl2anc 693 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) = 𝑓) |
| 32 | | ssrest 20980 |
. . . . . . 7
⊢ ((𝑢 ∈ (UFil‘𝑋) ∧ 𝑓 ⊆ 𝑢) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
| 33 | 24, 20, 32 | syl2anc 693 |
. . . . . 6
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → (𝑓 ↾t 𝑌) ⊆ (𝑢 ↾t 𝑌)) |
| 34 | 31, 33 | eqsstr3d 3640 |
. . . . 5
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → 𝑓 ⊆ (𝑢 ↾t 𝑌)) |
| 35 | | sseq2 3627 |
. . . . . 6
⊢ (𝑔 = (𝑢 ↾t 𝑌) → (𝑓 ⊆ 𝑔 ↔ 𝑓 ⊆ (𝑢 ↾t 𝑌))) |
| 36 | 35 | rspcev 3309 |
. . . . 5
⊢ (((𝑢 ↾t 𝑌) ∈ (UFil‘𝑌) ∧ 𝑓 ⊆ (𝑢 ↾t 𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 37 | 28, 34, 36 | syl2anc 693 |
. . . 4
⊢ ((((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) ∧ (𝑢 ∈ (UFil‘𝑋) ∧ (𝑋filGen𝑓) ⊆ 𝑢)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 38 | 15, 37 | rexlimddv 3035 |
. . 3
⊢ (((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) ∧ 𝑓 ∈ (Fil‘𝑌)) → ∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 39 | 38 | ralrimiva 2966 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔) |
| 40 | | ssexg 4804 |
. . . 4
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ UFL) → 𝑌 ∈ V) |
| 41 | 40 | ancoms 469 |
. . 3
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ V) |
| 42 | | isufl 21717 |
. . 3
⊢ (𝑌 ∈ V → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
| 43 | 41, 42 | syl 17 |
. 2
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → (𝑌 ∈ UFL ↔ ∀𝑓 ∈ (Fil‘𝑌)∃𝑔 ∈ (UFil‘𝑌)𝑓 ⊆ 𝑔)) |
| 44 | 39, 43 | mpbird 247 |
1
⊢ ((𝑋 ∈ UFL ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ UFL) |