MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisoex Structured version   Visualization version   GIF version

Theorem supisoex 8380
Description: Lemma for supiso 8381. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
supisoex.3 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
Assertion
Ref Expression
supisoex (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐶,𝑣,𝑤,𝑥,𝑦,𝑧   𝜑,𝑢,𝑤   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝑅,𝑤,𝑥,𝑦,𝑧   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝑅(𝑣)

Proof of Theorem supisoex
StepHypRef Expression
1 supisoex.3 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)))
2 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
3 supiso.2 . . 3 (𝜑𝐶𝐴)
4 simpl 473 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
5 simpr 477 . . . . . 6 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐶𝐴)
64, 5supisolem 8379 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
7 isof1o 6573 . . . . . . . 8 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
8 f1of 6137 . . . . . . . 8 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
94, 7, 83syl 18 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → 𝐹:𝐴𝐵)
109ffvelrnda 6359 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
11 breq1 4656 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑢𝑆𝑤 ↔ (𝐹𝑥)𝑆𝑤))
1211notbid 308 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → (¬ 𝑢𝑆𝑤 ↔ ¬ (𝐹𝑥)𝑆𝑤))
1312ralbidv 2986 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤))
14 breq2 4657 . . . . . . . . . . 11 (𝑢 = (𝐹𝑥) → (𝑤𝑆𝑢𝑤𝑆(𝐹𝑥)))
1514imbi1d 331 . . . . . . . . . 10 (𝑢 = (𝐹𝑥) → ((𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1615ralbidv 2986 . . . . . . . . 9 (𝑢 = (𝐹𝑥) → (∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1713, 16anbi12d 747 . . . . . . . 8 (𝑢 = (𝐹𝑥) → ((∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
1817rspcev 3309 . . . . . . 7 (((𝐹𝑥) ∈ 𝐵 ∧ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
1918ex 450 . . . . . 6 ((𝐹𝑥) ∈ 𝐵 → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2010, 19syl 17 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝑥)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝑥) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
216, 20sylbid 230 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐴) → ((∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
2221rexlimdva 3031 . . 3 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
232, 3, 22syl2anc 693 . 2 (𝜑 → (∃𝑥𝐴 (∀𝑦𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐶 𝑦𝑅𝑧)) → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
241, 23mpd 15 1 (𝜑 → ∃𝑢𝐵 (∀𝑤 ∈ (𝐹𝐶) ¬ 𝑢𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆𝑢 → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  cima 5117  wf 5884  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator