MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supisolem Structured version   Visualization version   GIF version

Theorem supisolem 8379
Description: Lemma for supiso 8381. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypotheses
Ref Expression
supiso.1 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
supiso.2 (𝜑𝐶𝐴)
Assertion
Ref Expression
supisolem ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Distinct variable groups:   𝑤,𝑣,𝑦,𝑧,𝐴   𝑣,𝐶,𝑤,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝜑,𝑤   𝑣,𝐹,𝑤,𝑦,𝑧   𝑤,𝑅,𝑦,𝑧   𝑣,𝑆,𝑤,𝑦,𝑧   𝑣,𝐵,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣)   𝐷(𝑣)   𝑅(𝑣)

Proof of Theorem supisolem
StepHypRef Expression
1 supiso.1 . . 3 (𝜑𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 supiso.2 . . 3 (𝜑𝐶𝐴)
31, 2jca 554 . 2 (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴))
4 simpll 790 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
54adantr 481 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
6 simplr 792 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝐷𝐴)
7 simplr 792 . . . . . . . 8 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐶𝐴)
87sselda 3603 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → 𝑦𝐴)
9 isorel 6576 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐷𝐴𝑦𝐴)) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
105, 6, 8, 9syl12anc 1324 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (𝐷𝑅𝑦 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1110notbid 308 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐶) → (¬ 𝐷𝑅𝑦 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1211ralbidva 2985 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
13 isof1o 6573 . . . . . . 7 (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴1-1-onto𝐵)
144, 13syl 17 . . . . . 6 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹:𝐴1-1-onto𝐵)
15 f1ofn 6138 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
1614, 15syl 17 . . . . 5 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → 𝐹 Fn 𝐴)
17 breq2 4657 . . . . . . 7 (𝑤 = (𝐹𝑦) → ((𝐹𝐷)𝑆𝑤 ↔ (𝐹𝐷)𝑆(𝐹𝑦)))
1817notbid 308 . . . . . 6 (𝑤 = (𝐹𝑦) → (¬ (𝐹𝐷)𝑆𝑤 ↔ ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
1918ralima 6498 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2016, 7, 19syl2anc 693 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ↔ ∀𝑦𝐶 ¬ (𝐹𝐷)𝑆(𝐹𝑦)))
2112, 20bitr4d 271 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ↔ ∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤))
224adantr 481 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
23 simpr 477 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝑦𝐴)
24 simplr 792 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐷𝐴)
25 isorel 6576 . . . . . . 7 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝐷𝐴)) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2622, 23, 24, 25syl12anc 1324 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝐷 ↔ (𝐹𝑦)𝑆(𝐹𝐷)))
2722adantr 481 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵))
28 simplr 792 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑦𝐴)
297adantr 481 . . . . . . . . . 10 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐶𝐴)
3029sselda 3603 . . . . . . . . 9 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → 𝑧𝐴)
31 isorel 6576 . . . . . . . . 9 ((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3227, 28, 30, 31syl12anc 1324 . . . . . . . 8 (((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) ∧ 𝑧𝐶) → (𝑦𝑅𝑧 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3332rexbidva 3049 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3416adantr 481 . . . . . . . 8 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → 𝐹 Fn 𝐴)
35 breq2 4657 . . . . . . . . 9 (𝑣 = (𝐹𝑧) → ((𝐹𝑦)𝑆𝑣 ↔ (𝐹𝑦)𝑆(𝐹𝑧)))
3635rexima 6497 . . . . . . . 8 ((𝐹 Fn 𝐴𝐶𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3734, 29, 36syl2anc 693 . . . . . . 7 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑧𝐶 (𝐹𝑦)𝑆(𝐹𝑧)))
3833, 37bitr4d 271 . . . . . 6 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → (∃𝑧𝐶 𝑦𝑅𝑧 ↔ ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣))
3926, 38imbi12d 334 . . . . 5 ((((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) ∧ 𝑦𝐴) → ((𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
4039ralbidva 2985 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣)))
41 f1ofo 6144 . . . . 5 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴onto𝐵)
42 breq1 4656 . . . . . . 7 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆(𝐹𝐷) ↔ 𝑤𝑆(𝐹𝐷)))
43 breq1 4656 . . . . . . . 8 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)𝑆𝑣𝑤𝑆𝑣))
4443rexbidv 3052 . . . . . . 7 ((𝐹𝑦) = 𝑤 → (∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣 ↔ ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))
4542, 44imbi12d 334 . . . . . 6 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4645cbvfo 6544 . . . . 5 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4714, 41, 463syl 18 . . . 4 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 ((𝐹𝑦)𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)(𝐹𝑦)𝑆𝑣) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4840, 47bitrd 268 . . 3 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → (∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧) ↔ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣)))
4921, 48anbi12d 747 . 2 (((𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
503, 49sylan 488 1 ((𝜑𝐷𝐴) → ((∀𝑦𝐶 ¬ 𝐷𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐷 → ∃𝑧𝐶 𝑦𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹𝐶) ¬ (𝐹𝐷)𝑆𝑤 ∧ ∀𝑤𝐵 (𝑤𝑆(𝐹𝐷) → ∃𝑣 ∈ (𝐹𝐶)𝑤𝑆𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  cima 5117   Fn wfn 5883  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897
This theorem is referenced by:  supisoex  8380  supiso  8381
  Copyright terms: Public domain W3C validator