| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supisoex | Structured version Visualization version Unicode version | ||
| Description: Lemma for supiso 8381. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| supiso.1 |
|
| supiso.2 |
|
| supisoex.3 |
|
| Ref | Expression |
|---|---|
| supisoex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supisoex.3 |
. 2
| |
| 2 | supiso.1 |
. . 3
| |
| 3 | supiso.2 |
. . 3
| |
| 4 | simpl 473 |
. . . . . 6
| |
| 5 | simpr 477 |
. . . . . 6
| |
| 6 | 4, 5 | supisolem 8379 |
. . . . 5
|
| 7 | isof1o 6573 |
. . . . . . . 8
| |
| 8 | f1of 6137 |
. . . . . . . 8
| |
| 9 | 4, 7, 8 | 3syl 18 |
. . . . . . 7
|
| 10 | 9 | ffvelrnda 6359 |
. . . . . 6
|
| 11 | breq1 4656 |
. . . . . . . . . . 11
| |
| 12 | 11 | notbid 308 |
. . . . . . . . . 10
|
| 13 | 12 | ralbidv 2986 |
. . . . . . . . 9
|
| 14 | breq2 4657 |
. . . . . . . . . . 11
| |
| 15 | 14 | imbi1d 331 |
. . . . . . . . . 10
|
| 16 | 15 | ralbidv 2986 |
. . . . . . . . 9
|
| 17 | 13, 16 | anbi12d 747 |
. . . . . . . 8
|
| 18 | 17 | rspcev 3309 |
. . . . . . 7
|
| 19 | 18 | ex 450 |
. . . . . 6
|
| 20 | 10, 19 | syl 17 |
. . . . 5
|
| 21 | 6, 20 | sylbid 230 |
. . . 4
|
| 22 | 21 | rexlimdva 3031 |
. . 3
|
| 23 | 2, 3, 22 | syl2anc 693 |
. 2
|
| 24 | 1, 23 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |