MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem12 Structured version   Visualization version   GIF version

Theorem wfrlem12 7426
Description: Lemma for well-founded recursion. Here, we compute the value of the recursive definition generator. (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrfun.1 𝑅 We 𝐴
wfrfun.2 𝑅 Se 𝐴
wfrfun.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrlem12 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑅
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem wfrlem12
Dummy variables 𝑓 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . 3 𝑦 ∈ V
21eldm2 5322 . 2 (𝑦 ∈ dom 𝐹 ↔ ∃𝑧𝑦, 𝑧⟩ ∈ 𝐹)
3 wfrfun.3 . . . . . . 7 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
4 df-wrecs 7407 . . . . . . 7 wrecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
53, 4eqtri 2644 . . . . . 6 𝐹 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
65eleq2i 2693 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
7 eluniab 4447 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
86, 7bitri 264 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))
9 abid 2610 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
10 elssuni 4467 . . . . . . . . 9 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))})
1110, 5syl6sseqr 3652 . . . . . . . 8 (𝑓 ∈ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} → 𝑓𝐹)
129, 11sylbir 225 . . . . . . 7 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → 𝑓𝐹)
13 fnop 5994 . . . . . . . . . . 11 ((𝑓 Fn 𝑥 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑓) → 𝑦𝑥)
1413ex 450 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑓𝑦𝑥))
15 rsp 2929 . . . . . . . . . . . . . . 15 (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦𝑥 → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1615impcom 446 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
17 rsp 2929 . . . . . . . . . . . . . . . . 17 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
18 fndm 5990 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
1918sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥))
2018eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 Fn 𝑥 → (𝑦 ∈ dom 𝑓𝑦𝑥))
2119, 20anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥)))
2221biimprd 238 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑦𝑥) → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
2322expd 452 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓))))
2423impcom 446 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)))
25 wfrfun.1 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 We 𝐴
26 wfrfun.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑅 Se 𝐴
2725, 26, 3wfrfun 7425 . . . . . . . . . . . . . . . . . . . . . . 23 Fun 𝐹
28 funssfv 6209 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹𝑦 ∈ dom 𝑓) → (𝐹𝑦) = (𝑓𝑦))
29283adant3l 1322 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹𝑦) = (𝑓𝑦))
30 fun2ssres 5931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝑓𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
31303adant3r 1323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))
3231fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
3329, 32eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3433biimprd 238 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝐹𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3527, 34mp3an1 1411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓)) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
3635expcom 451 . . . . . . . . . . . . . . . . . . . . 21 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → (𝑓𝐹 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3736com23 86 . . . . . . . . . . . . . . . . . . . 20 ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓𝑦 ∈ dom 𝑓) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
3824, 37syl6com 37 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥𝑓 Fn 𝑥) → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))
3938expd 452 . . . . . . . . . . . . . . . . . 18 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑓 Fn 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4039com34 91 . . . . . . . . . . . . . . . . 17 (𝑦𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4117, 40sylcom 30 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4241adantl 482 . . . . . . . . . . . . . . 15 ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4342com14 96 . . . . . . . . . . . . . 14 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4416, 43syl7 74 . . . . . . . . . . . . 13 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑦𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4544exp4a 633 . . . . . . . . . . . 12 (𝑓 Fn 𝑥 → (𝑦𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))))
4645pm2.43d 53 . . . . . . . . . . 11 (𝑓 Fn 𝑥 → (𝑦𝑥 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4746com34 91 . . . . . . . . . 10 (𝑓 Fn 𝑥 → (𝑦𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
4814, 47syldc 48 . . . . . . . . 9 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (𝑓 Fn 𝑥 → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))
49483impd 1281 . . . . . . . 8 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5049exlimdv 1861 . . . . . . 7 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))
5112, 50mpdi 45 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
5251imp 445 . . . . 5 ((⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5352exlimiv 1858 . . . 4 (∃𝑓(⟨𝑦, 𝑧⟩ ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
548, 53sylbi 207 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
5554exlimiv 1858 . 2 (∃𝑧𝑦, 𝑧⟩ ∈ 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
562, 55sylbi 207 1 (𝑦 ∈ dom 𝐹 → (𝐹𝑦) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wss 3574  cop 4183   cuni 4436   Se wse 5071   We wwe 5072  dom cdm 5114  cres 5116  Predcpred 5679  Fun wfun 5882   Fn wfn 5883  cfv 5888  wrecscwrecs 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407
This theorem is referenced by:  wfrlem14  7428  wfr2a  7432
  Copyright terms: Public domain W3C validator