![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgtset | Structured version Visualization version GIF version |
Description: The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
Ref | Expression |
---|---|
symgtset | ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrp.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | eqid 2622 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 1, 2 | symgbas 17800 | . . . 4 ⊢ (Base‘𝐺) = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
4 | eqid 2622 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | 1, 2, 4 | symgplusg 17809 | . . . 4 ⊢ (+g‘𝐺) = (𝑓 ∈ (Base‘𝐺), 𝑔 ∈ (Base‘𝐺) ↦ (𝑓 ∘ 𝑔)) |
6 | eqid 2622 | . . . 4 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (∏t‘(𝐴 × {𝒫 𝐴})) | |
7 | 1, 3, 5, 6 | symgval 17799 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
8 | 7 | fveq2d 6195 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘𝐺) = (TopSet‘{〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
9 | fvex 6201 | . . 3 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) ∈ V | |
10 | eqid 2622 | . . . 4 ⊢ {〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} = {〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉} | |
11 | 10 | topgrptset 16045 | . . 3 ⊢ ((∏t‘(𝐴 × {𝒫 𝐴})) ∈ V → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘{〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉})) |
12 | 9, 11 | ax-mp 5 | . 2 ⊢ (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘{〈(Base‘ndx), (Base‘𝐺)〉, 〈(+g‘ndx), (+g‘𝐺)〉, 〈(TopSet‘ndx), (∏t‘(𝐴 × {𝒫 𝐴}))〉}) |
13 | 8, 12 | syl6reqr 2675 | 1 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 𝒫 cpw 4158 {csn 4177 {ctp 4181 〈cop 4183 × cxp 5112 ‘cfv 5888 ndxcnx 15854 Basecbs 15857 +gcplusg 15941 TopSetcts 15947 ∏tcpt 16099 SymGrpcsymg 17797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-plusg 15954 df-tset 15960 df-symg 17798 |
This theorem is referenced by: symgtopn 17825 |
Copyright terms: Public domain | W3C validator |