![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl3r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl3r | ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1090 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | adantr 481 | 1 ⊢ (((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: tfisi 7058 omopth2 7664 ltmul1a 10872 xmulasslem3 12116 xadddi2 12127 swrdsbslen 13448 swrdspsleq 13449 dvdsadd2b 15028 pockthg 15610 psgnunilem4 17917 efgred 18161 marrepeval 20369 submaeval 20388 mdetmul 20429 minmar1eval 20455 ptbasin 21380 basqtop 21514 xrsmopn 22615 axpasch 25821 axeuclid 25843 br4 31648 nosupbnd1lem3 31856 nosupbnd1lem4 31857 nosupbnd1lem5 31858 btwnouttr2 32129 trisegint 32135 cgrxfr 32162 lineext 32183 btwnconn1lem13 32206 btwnconn1lem14 32207 btwnconn3 32210 brsegle 32215 brsegle2 32216 segleantisym 32222 outsideofeu 32238 lineunray 32254 lineelsb2 32255 cvrcmp 34570 atcvrj2b 34718 3dimlem3 34747 3dimlem3OLDN 34748 3dim3 34755 ps-1 34763 ps-2 34764 lplnnle2at 34827 2llnm3N 34855 4atlem0a 34879 4atlem3 34882 4atlem3a 34883 lnatexN 35065 paddasslem8 35113 paddasslem9 35114 paddasslem10 35115 paddasslem12 35117 paddasslem13 35118 lhpexle2lem 35295 lhpexle3 35298 lhpat3 35332 4atex 35362 trlval2 35450 trlval4 35475 cdleme16 35572 cdleme21 35625 cdleme21k 35626 cdleme27cl 35654 cdleme27N 35657 cdleme43fsv1snlem 35708 cdleme48fvg 35788 cdlemg8 35919 cdlemg15a 35943 cdlemg16z 35947 cdlemg24 35976 cdlemg38 36003 cdlemg40 36005 trlcone 36016 cdlemj2 36110 tendoid0 36113 tendoconid 36117 cdlemk34 36198 cdlemk38 36203 cdlemkid4 36222 cdlemk53 36245 tendospcanN 36312 dihvalcqpre 36524 dihmeetlem15N 36610 qirropth 37473 mzpcong 37539 jm2.26 37569 aomclem6 37629 islptre 39851 limccog 39852 limcleqr 39876 fourierdlem42 40366 elaa2 40451 |
Copyright terms: Public domain | W3C validator |