| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem15 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. Without assuming ax-rep 4771, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem15 | ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . 4 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem9a 7482 | . . 3 ⊢ (𝐵 ∈ dom recs(𝐹) → (recs(𝐹) ↾ 𝐵) ∈ V) |
| 3 | 2 | adantl 482 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ dom recs(𝐹)) → (recs(𝐹) ↾ 𝐵) ∈ V) |
| 4 | 1 | tfrlem13 7486 | . . . 4 ⊢ ¬ recs(𝐹) ∈ V |
| 5 | simpr 477 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (recs(𝐹) ↾ 𝐵) ∈ V) | |
| 6 | resss 5422 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹) | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) ⊆ recs(𝐹)) |
| 8 | 1 | tfrlem6 7478 | . . . . . . . . 9 ⊢ Rel recs(𝐹) |
| 9 | resdm 5441 | . . . . . . . . 9 ⊢ (Rel recs(𝐹) → (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . . . 8 ⊢ (recs(𝐹) ↾ dom recs(𝐹)) = recs(𝐹) |
| 11 | ssres2 5425 | . . . . . . . 8 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ dom recs(𝐹)) ⊆ (recs(𝐹) ↾ 𝐵)) | |
| 12 | 10, 11 | syl5eqssr 3650 | . . . . . . 7 ⊢ (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ⊆ (recs(𝐹) ↾ 𝐵)) |
| 13 | 7, 12 | eqssd 3620 | . . . . . 6 ⊢ (dom recs(𝐹) ⊆ 𝐵 → (recs(𝐹) ↾ 𝐵) = recs(𝐹)) |
| 14 | 13 | eleq1d 2686 | . . . . 5 ⊢ (dom recs(𝐹) ⊆ 𝐵 → ((recs(𝐹) ↾ 𝐵) ∈ V ↔ recs(𝐹) ∈ V)) |
| 15 | 5, 14 | syl5ibcom 235 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (dom recs(𝐹) ⊆ 𝐵 → recs(𝐹) ∈ V)) |
| 16 | 4, 15 | mtoi 190 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → ¬ dom recs(𝐹) ⊆ 𝐵) |
| 17 | 1 | tfrlem8 7480 | . . . 4 ⊢ Ord dom recs(𝐹) |
| 18 | eloni 5733 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 19 | 18 | adantr 481 | . . . 4 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → Ord 𝐵) |
| 20 | ordtri1 5756 | . . . . 5 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (dom recs(𝐹) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ dom recs(𝐹))) | |
| 21 | 20 | con2bid 344 | . . . 4 ⊢ ((Ord dom recs(𝐹) ∧ Ord 𝐵) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
| 22 | 17, 19, 21 | sylancr 695 | . . 3 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → (𝐵 ∈ dom recs(𝐹) ↔ ¬ dom recs(𝐹) ⊆ 𝐵)) |
| 23 | 16, 22 | mpbird 247 | . 2 ⊢ ((𝐵 ∈ On ∧ (recs(𝐹) ↾ 𝐵) ∈ V) → 𝐵 ∈ dom recs(𝐹)) |
| 24 | 3, 23 | impbida 877 | 1 ⊢ (𝐵 ∈ On → (𝐵 ∈ dom recs(𝐹) ↔ (recs(𝐹) ↾ 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 dom cdm 5114 ↾ cres 5116 Rel wrel 5119 Ord word 5722 Oncon0 5723 Fn wfn 5883 ‘cfv 5888 recscrecs 7467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-wrecs 7407 df-recs 7468 |
| This theorem is referenced by: tfrlem16 7489 tfr2b 7492 |
| Copyright terms: Public domain | W3C validator |