![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem8 | ⊢ Ord dom recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 7474 | . . . . . . . 8 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
3 | 2 | abeq2i 2735 | . . . . . . 7 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
4 | fndm 5990 | . . . . . . . . . . 11 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
6 | 5 | eleq1d 2686 | . . . . . . . . 9 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
7 | 6 | biimprcd 240 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
8 | 7 | rexlimiv 3027 | . . . . . . 7 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
9 | 3, 8 | sylbi 207 | . . . . . 6 ⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
10 | eleq1a 2696 | . . . . . 6 ⊢ (dom 𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
12 | 11 | rexlimiv 3027 | . . . 4 ⊢ (∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
13 | 12 | abssi 3677 | . . 3 ⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
14 | ssorduni 6985 | . . 3 ⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
16 | 1 | recsfval 7477 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
17 | 16 | dmeqi 5325 | . . . 4 ⊢ dom recs(𝐹) = dom ∪ 𝐴 |
18 | dmuni 5334 | . . . 4 ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
19 | vex 3203 | . . . . . 6 ⊢ 𝑔 ∈ V | |
20 | 19 | dmex 7099 | . . . . 5 ⊢ dom 𝑔 ∈ V |
21 | 20 | dfiun2 4554 | . . . 4 ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
22 | 17, 18, 21 | 3eqtri 2648 | . . 3 ⊢ dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
23 | ordeq 5730 | . . 3 ⊢ (dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) |
25 | 15, 24 | mpbir 221 | 1 ⊢ Ord dom recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∪ cuni 4436 ∪ ciun 4520 dom cdm 5114 ↾ cres 5116 Ord word 5722 Oncon0 5723 Fn wfn 5883 ‘cfv 5888 recscrecs 7467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-wrecs 7407 df-recs 7468 |
This theorem is referenced by: tfrlem10 7483 tfrlem12 7485 tfrlem13 7486 tfrlem14 7487 tfrlem15 7488 tfrlem16 7489 |
Copyright terms: Public domain | W3C validator |