![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr2b | Structured version Visualization version GIF version |
Description: Without assuming ax-rep 4771, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr2b | ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 6988 | . 2 ⊢ (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On)) | |
2 | eqid 2622 | . . . . 5 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem15 7488 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom recs(𝐺) ↔ (recs(𝐺) ↾ 𝐴) ∈ V)) |
4 | tfr.1 | . . . . . 6 ⊢ 𝐹 = recs(𝐺) | |
5 | 4 | dmeqi 5325 | . . . . 5 ⊢ dom 𝐹 = dom recs(𝐺) |
6 | 5 | eleq2i 2693 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ dom recs(𝐺)) |
7 | 4 | reseq1i 5392 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = (recs(𝐺) ↾ 𝐴) |
8 | 7 | eleq1i 2692 | . . . 4 ⊢ ((𝐹 ↾ 𝐴) ∈ V ↔ (recs(𝐺) ↾ 𝐴) ∈ V) |
9 | 3, 6, 8 | 3bitr4g 303 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
10 | onprc 6984 | . . . . . 6 ⊢ ¬ On ∈ V | |
11 | elex 3212 | . . . . . 6 ⊢ (On ∈ dom 𝐹 → On ∈ V) | |
12 | 10, 11 | mto 188 | . . . . 5 ⊢ ¬ On ∈ dom 𝐹 |
13 | eleq1 2689 | . . . . 5 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ On ∈ dom 𝐹)) | |
14 | 12, 13 | mtbiri 317 | . . . 4 ⊢ (𝐴 = On → ¬ 𝐴 ∈ dom 𝐹) |
15 | 2 | tfrlem13 7486 | . . . . . 6 ⊢ ¬ recs(𝐺) ∈ V |
16 | 4 | eleq1i 2692 | . . . . . 6 ⊢ (𝐹 ∈ V ↔ recs(𝐺) ∈ V) |
17 | 15, 16 | mtbir 313 | . . . . 5 ⊢ ¬ 𝐹 ∈ V |
18 | reseq2 5391 | . . . . . . 7 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = (𝐹 ↾ On)) | |
19 | 4 | tfr1a 7490 | . . . . . . . . . 10 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
20 | 19 | simpli 474 | . . . . . . . . 9 ⊢ Fun 𝐹 |
21 | funrel 5905 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Rel 𝐹) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ Rel 𝐹 |
23 | 19 | simpri 478 | . . . . . . . . 9 ⊢ Lim dom 𝐹 |
24 | limord 5784 | . . . . . . . . 9 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
25 | ordsson 6989 | . . . . . . . . 9 ⊢ (Ord dom 𝐹 → dom 𝐹 ⊆ On) | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ dom 𝐹 ⊆ On |
27 | relssres 5437 | . . . . . . . 8 ⊢ ((Rel 𝐹 ∧ dom 𝐹 ⊆ On) → (𝐹 ↾ On) = 𝐹) | |
28 | 22, 26, 27 | mp2an 708 | . . . . . . 7 ⊢ (𝐹 ↾ On) = 𝐹 |
29 | 18, 28 | syl6eq 2672 | . . . . . 6 ⊢ (𝐴 = On → (𝐹 ↾ 𝐴) = 𝐹) |
30 | 29 | eleq1d 2686 | . . . . 5 ⊢ (𝐴 = On → ((𝐹 ↾ 𝐴) ∈ V ↔ 𝐹 ∈ V)) |
31 | 17, 30 | mtbiri 317 | . . . 4 ⊢ (𝐴 = On → ¬ (𝐹 ↾ 𝐴) ∈ V) |
32 | 14, 31 | 2falsed 366 | . . 3 ⊢ (𝐴 = On → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
33 | 9, 32 | jaoi 394 | . 2 ⊢ ((𝐴 ∈ On ∨ 𝐴 = On) → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
34 | 1, 33 | sylbi 207 | 1 ⊢ (Ord 𝐴 → (𝐴 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝐴) ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 dom cdm 5114 ↾ cres 5116 Rel wrel 5119 Ord word 5722 Oncon0 5723 Lim wlim 5724 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 recscrecs 7467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-wrecs 7407 df-recs 7468 |
This theorem is referenced by: ordtypelem3 8425 ordtypelem9 8431 |
Copyright terms: Public domain | W3C validator |