Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlcoat Structured version   Visualization version   GIF version

Theorem trlcoat 36011
Description: The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.)
Hypotheses
Ref Expression
trlcoat.a 𝐴 = (Atoms‘𝐾)
trlcoat.h 𝐻 = (LHyp‘𝐾)
trlcoat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlcoat.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlcoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)

Proof of Theorem trlcoat
StepHypRef Expression
1 trlcoat.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 trlcoat.t . . . . . . . 8 𝑇 = ((LTrn‘𝐾)‘𝑊)
31, 2ltrnco 36007 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
433expb 1266 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → (𝐹𝐺) ∈ 𝑇)
5 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
6 eqid 2622 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
7 trlcoat.r . . . . . . 7 𝑅 = ((trL‘𝐾)‘𝑊)
85, 6, 1, 2, 7trlid0b 35465 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
94, 8syldan 487 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) ↔ (𝑅‘(𝐹𝐺)) = (0.‘𝐾)))
10 coass 5654 . . . . . . . . . 10 ((𝐹𝐹) ∘ 𝐺) = (𝐹 ∘ (𝐹𝐺))
11 simpll 790 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplrl 800 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
135, 1, 2ltrn1o 35410 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1411, 12, 13syl2anc 693 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
15 f1ococnv1 6165 . . . . . . . . . . . 12 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1614, 15syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1716coeq1d 5283 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → ((𝐹𝐹) ∘ 𝐺) = (( I ↾ (Base‘𝐾)) ∘ 𝐺))
18 coeq2 5280 . . . . . . . . . . 11 ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
1918adantl 482 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ (𝐹𝐺)) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
2010, 17, 193eqtr3a 2680 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = (𝐹 ∘ ( I ↾ (Base‘𝐾))))
21 simplrr 801 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺𝑇)
225, 1, 2ltrn1o 35410 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
2311, 21, 22syl2anc 693 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
24 f1of 6137 . . . . . . . . . 10 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 fcoi2 6079 . . . . . . . . . 10 (𝐺:(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
2623, 24, 253syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (( I ↾ (Base‘𝐾)) ∘ 𝐺) = 𝐺)
271, 2ltrncnv 35432 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
2811, 12, 27syl2anc 693 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹𝑇)
295, 1, 2ltrn1o 35410 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
3011, 28, 29syl2anc 693 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
31 f1of 6137 . . . . . . . . . 10 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)⟶(Base‘𝐾))
32 fcoi1 6078 . . . . . . . . . 10 (𝐹:(Base‘𝐾)⟶(Base‘𝐾) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3330, 31, 323syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝐹 ∘ ( I ↾ (Base‘𝐾))) = 𝐹)
3420, 26, 333eqtr3d 2664 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → 𝐺 = 𝐹)
3534fveq2d 6195 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐺) = (𝑅𝐹))
361, 2, 7trlcnv 35452 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
3711, 12, 36syl2anc 693 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐹))
3835, 37eqtr2d 2657 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) ∧ (𝐹𝐺) = ( I ↾ (Base‘𝐾))) → (𝑅𝐹) = (𝑅𝐺))
3938ex 450 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝐹𝐺) = ( I ↾ (Base‘𝐾)) → (𝑅𝐹) = (𝑅𝐺)))
409, 39sylbird 250 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) = (0.‘𝐾) → (𝑅𝐹) = (𝑅𝐺)))
4140necon3d 2815 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
42 trlcoat.a . . . . 5 𝐴 = (Atoms‘𝐾)
436, 42, 1, 2, 7trlatn0 35459 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝐺) ∈ 𝑇) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
444, 43syldan 487 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅‘(𝐹𝐺)) ∈ 𝐴 ↔ (𝑅‘(𝐹𝐺)) ≠ (0.‘𝐾)))
4541, 44sylibrd 249 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ≠ (𝑅𝐺) → (𝑅‘(𝐹𝐺)) ∈ 𝐴))
46453impia 1261 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅‘(𝐹𝐺)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794   I cid 5023  ccnv 5113  cres 5116  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  Basecbs 15857  0.cp0 17037  Atomscatm 34550  HLchlt 34637  LHypclh 35270  LTrncltrn 35387  trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  trlcocnvat  36012  trlconid  36013  trljco  36028  cdlemh2  36104  cdlemh  36105
  Copyright terms: Public domain W3C validator