MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om Structured version   Visualization version   GIF version

Theorem tskr1om 9589
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf 8535.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Assertion
Ref Expression
tskr1om ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)

Proof of Theorem tskr1om
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7 (𝑥 = ∅ → (𝑅1𝑥) = (𝑅1‘∅))
21eleq1d 2686 . . . . . 6 (𝑥 = ∅ → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘∅) ∈ 𝑇))
3 fveq2 6191 . . . . . . 7 (𝑥 = 𝑦 → (𝑅1𝑥) = (𝑅1𝑦))
43eleq1d 2686 . . . . . 6 (𝑥 = 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1𝑦) ∈ 𝑇))
5 fveq2 6191 . . . . . . 7 (𝑥 = suc 𝑦 → (𝑅1𝑥) = (𝑅1‘suc 𝑦))
65eleq1d 2686 . . . . . 6 (𝑥 = suc 𝑦 → ((𝑅1𝑥) ∈ 𝑇 ↔ (𝑅1‘suc 𝑦) ∈ 𝑇))
7 r10 8631 . . . . . . 7 (𝑅1‘∅) = ∅
8 tsk0 9585 . . . . . . 7 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ∅ ∈ 𝑇)
97, 8syl5eqel 2705 . . . . . 6 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1‘∅) ∈ 𝑇)
10 tskpw 9575 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → 𝒫 (𝑅1𝑦) ∈ 𝑇)
11 nnon 7071 . . . . . . . . . . 11 (𝑦 ∈ ω → 𝑦 ∈ On)
12 r1suc 8633 . . . . . . . . . . 11 (𝑦 ∈ On → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1311, 12syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑅1‘suc 𝑦) = 𝒫 (𝑅1𝑦))
1413eleq1d 2686 . . . . . . . . 9 (𝑦 ∈ ω → ((𝑅1‘suc 𝑦) ∈ 𝑇 ↔ 𝒫 (𝑅1𝑦) ∈ 𝑇))
1510, 14syl5ibr 236 . . . . . . . 8 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ (𝑅1𝑦) ∈ 𝑇) → (𝑅1‘suc 𝑦) ∈ 𝑇))
1615expd 452 . . . . . . 7 (𝑦 ∈ ω → (𝑇 ∈ Tarski → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
1716adantrd 484 . . . . . 6 (𝑦 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → ((𝑅1𝑦) ∈ 𝑇 → (𝑅1‘suc 𝑦) ∈ 𝑇)))
182, 4, 6, 9, 17finds2 7094 . . . . 5 (𝑥 ∈ ω → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇))
19 eleq1 2689 . . . . . 6 ((𝑅1𝑥) = 𝑦 → ((𝑅1𝑥) ∈ 𝑇𝑦𝑇))
2019imbi2d 330 . . . . 5 ((𝑅1𝑥) = 𝑦 → (((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1𝑥) ∈ 𝑇) ↔ ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2118, 20syl5ibcom 235 . . . 4 (𝑥 ∈ ω → ((𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇)))
2221rexlimiv 3027 . . 3 (∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦 → ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → 𝑦𝑇))
23 r1fnon 8630 . . . . 5 𝑅1 Fn On
24 fnfun 5988 . . . . 5 (𝑅1 Fn On → Fun 𝑅1)
2523, 24ax-mp 5 . . . 4 Fun 𝑅1
26 fvelima 6248 . . . 4 ((Fun 𝑅1𝑦 ∈ (𝑅1 “ ω)) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2725, 26mpan 706 . . 3 (𝑦 ∈ (𝑅1 “ ω) → ∃𝑥 ∈ ω (𝑅1𝑥) = 𝑦)
2822, 27syl11 33 . 2 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑦 ∈ (𝑅1 “ ω) → 𝑦𝑇))
2928ssrdv 3609 1 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (𝑅1 “ ω) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  wss 3574  c0 3915  𝒫 cpw 4158  cima 5117  Oncon0 5723  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  ωcom 7065  𝑅1cr1 8625  Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627  df-tsk 9571
This theorem is referenced by:  tskr1om2  9590  tskinf  9591
  Copyright terms: Public domain W3C validator