![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmsval | Structured version Visualization version GIF version |
Description: Definition of the topological group sum(s) of a collection 𝐹(𝑥) of values in the group with index set 𝐴. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tsmsval.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmsval.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tsmsval.s | ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) |
tsmsval.l | ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) |
tsmsval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
tsmsval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
tsmsval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
tsmsval | ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmsval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tsmsval.j | . 2 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tsmsval.s | . 2 ⊢ 𝑆 = (𝒫 𝐴 ∩ Fin) | |
4 | tsmsval.l | . 2 ⊢ 𝐿 = ran (𝑧 ∈ 𝑆 ↦ {𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦}) | |
5 | tsmsval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
6 | tsmsval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | tsmsval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | fvex 6201 | . . . . 5 ⊢ (Base‘𝐺) ∈ V | |
9 | 1, 8 | eqeltri 2697 | . . . 4 ⊢ 𝐵 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | fex2 7121 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
12 | 6, 7, 10, 11 | syl3anc 1326 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | fdm 6051 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
14 | 6, 13 | syl 17 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
15 | 1, 2, 3, 4, 5, 12, 14 | tsmsval2 21933 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = ((𝐽 fLimf (𝑆filGen𝐿))‘(𝑦 ∈ 𝑆 ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 ↾ cres 5116 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 Basecbs 15857 TopOpenctopn 16082 Σg cgsu 16101 filGencfg 19735 fLimf cflf 21739 tsums ctsu 21929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-tsms 21930 |
This theorem is referenced by: eltsms 21936 haustsms 21939 tsmscls 21941 tsmsmhm 21949 tsmsadd 21950 |
Copyright terms: Public domain | W3C validator |