MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval Structured version   Visualization version   Unicode version

Theorem tsmsval 21934
Description: Definition of the topological group sum(s) of a collection  F ( x ) of values in the group with index set  A. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b  |-  B  =  ( Base `  G
)
tsmsval.j  |-  J  =  ( TopOpen `  G )
tsmsval.s  |-  S  =  ( ~P A  i^i  Fin )
tsmsval.l  |-  L  =  ran  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
tsmsval.g  |-  ( ph  ->  G  e.  V )
tsmsval.a  |-  ( ph  ->  A  e.  W )
tsmsval.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
tsmsval  |-  ( ph  ->  ( G tsums  F )  =  ( ( J 
fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G 
gsumg  ( F  |`  y ) ) ) ) )
Distinct variable groups:    y, z, F    y, G, z    ph, y,
z    y, S
Allowed substitution hints:    A( y, z)    B( y, z)    S( z)    J( y, z)    L( y, z)    V( y, z)    W( y, z)

Proof of Theorem tsmsval
StepHypRef Expression
1 tsmsval.b . 2  |-  B  =  ( Base `  G
)
2 tsmsval.j . 2  |-  J  =  ( TopOpen `  G )
3 tsmsval.s . 2  |-  S  =  ( ~P A  i^i  Fin )
4 tsmsval.l . 2  |-  L  =  ran  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
5 tsmsval.g . 2  |-  ( ph  ->  G  e.  V )
6 tsmsval.f . . 3  |-  ( ph  ->  F : A --> B )
7 tsmsval.a . . 3  |-  ( ph  ->  A  e.  W )
8 fvex 6201 . . . . 5  |-  ( Base `  G )  e.  _V
91, 8eqeltri 2697 . . . 4  |-  B  e. 
_V
109a1i 11 . . 3  |-  ( ph  ->  B  e.  _V )
11 fex2 7121 . . 3  |-  ( ( F : A --> B  /\  A  e.  W  /\  B  e.  _V )  ->  F  e.  _V )
126, 7, 10, 11syl3anc 1326 . 2  |-  ( ph  ->  F  e.  _V )
13 fdm 6051 . . 3  |-  ( F : A --> B  ->  dom  F  =  A )
146, 13syl 17 . 2  |-  ( ph  ->  dom  F  =  A )
151, 2, 3, 4, 5, 12, 14tsmsval2 21933 1  |-  ( ph  ->  ( G tsums  F )  =  ( ( J 
fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G 
gsumg  ( F  |`  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   TopOpenctopn 16082    gsumg cgsu 16101   filGencfg 19735    fLimf cflf 21739   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-tsms 21930
This theorem is referenced by:  eltsms  21936  haustsms  21939  tsmscls  21941  tsmsmhm  21949  tsmsadd  21950
  Copyright terms: Public domain W3C validator