| Step | Hyp | Ref
| Expression |
| 1 | | tsmsadd.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | tsmsadd.1 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 3 | | tsmsadd.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
| 4 | | tmdtps 21880 |
. . . . . . 7
⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopSp) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 6 | | tsmsadd.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | | tsmsadd.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 8 | 1, 2, 5, 6, 7 | tsmscl 21938 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵) |
| 9 | | tsmsadd.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝐺 tsums 𝐹)) |
| 10 | 8, 9 | sseldd 3604 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 11 | | tsmsadd.h |
. . . . . 6
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
| 12 | 1, 2, 5, 6, 11 | tsmscl 21938 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐻) ⊆ 𝐵) |
| 13 | | tsmsadd.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (𝐺 tsums 𝐻)) |
| 14 | 12, 13 | sseldd 3604 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 15 | | tsmsadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
| 16 | | eqid 2622 |
. . . . 5
⊢
(+𝑓‘𝐺) = (+𝑓‘𝐺) |
| 17 | 1, 15, 16 | plusfval 17248 |
. . . 4
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
| 18 | 10, 14, 17 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝑋(+𝑓‘𝐺)𝑌) = (𝑋 + 𝑌)) |
| 19 | | eqid 2622 |
. . . . . 6
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
| 20 | 1, 19 | istps 20738 |
. . . . 5
⊢ (𝐺 ∈ TopSp ↔
(TopOpen‘𝐺) ∈
(TopOn‘𝐵)) |
| 21 | 5, 20 | sylib 208 |
. . . 4
⊢ (𝜑 → (TopOpen‘𝐺) ∈ (TopOn‘𝐵)) |
| 22 | | eqid 2622 |
. . . . . 6
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
| 23 | | eqid 2622 |
. . . . . 6
⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
| 24 | | eqid 2622 |
. . . . . 6
⊢ ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) |
| 25 | 22, 23, 24, 6 | tsmsfbas 21931 |
. . . . 5
⊢ (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin))) |
| 26 | | fgcl 21682 |
. . . . 5
⊢ (ran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧}) ∈ (fBas‘(𝒫 𝐴 ∩ Fin)) → ((𝒫
𝐴 ∩ Fin)filGenran
(𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
| 27 | 25, 26 | syl 17 |
. . . 4
⊢ (𝜑 → ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})) ∈ (Fil‘(𝒫 𝐴 ∩ Fin))) |
| 28 | 1, 22, 2, 6, 7 | tsmslem1 21932 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝐵) |
| 29 | 1, 22, 2, 6, 11 | tsmslem1 21932 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐻 ↾ 𝑧)) ∈ 𝐵) |
| 30 | 1, 19, 22, 24, 2, 6, 7 | tsmsval 21934 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
| 31 | 9, 30 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑧))))) |
| 32 | 1, 19, 22, 24, 2, 6, 11 | tsmsval 21934 |
. . . . 5
⊢ (𝜑 → (𝐺 tsums 𝐻) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻 ↾ 𝑧))))) |
| 33 | 13, 32 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐻 ↾ 𝑧))))) |
| 34 | 19, 16 | tmdcn 21887 |
. . . . . 6
⊢ (𝐺 ∈ TopMnd →
(+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 35 | 3, 34 | syl 17 |
. . . . 5
⊢ (𝜑 →
(+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
| 36 | | opelxpi 5148 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 37 | 10, 14, 36 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 38 | | txtopon 21394 |
. . . . . . . 8
⊢
(((TopOpen‘𝐺)
∈ (TopOn‘𝐵)
∧ (TopOpen‘𝐺)
∈ (TopOn‘𝐵))
→ ((TopOpen‘𝐺)
×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵))) |
| 39 | 21, 21, 38 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → ((TopOpen‘𝐺) ×t
(TopOpen‘𝐺)) ∈
(TopOn‘(𝐵 ×
𝐵))) |
| 40 | | toponuni 20719 |
. . . . . . 7
⊢
(((TopOpen‘𝐺)
×t (TopOpen‘𝐺)) ∈ (TopOn‘(𝐵 × 𝐵)) → (𝐵 × 𝐵) = ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
| 41 | 39, 40 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 × 𝐵) = ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
| 42 | 37, 41 | eleqtrd 2703 |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) |
| 43 | | eqid 2622 |
. . . . . 6
⊢ ∪ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ∪ ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) |
| 44 | 43 | cncnpi 21082 |
. . . . 5
⊢
(((+𝑓‘𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) ∧ 〈𝑋, 𝑌〉 ∈ ∪
((TopOpen‘𝐺)
×t (TopOpen‘𝐺))) →
(+𝑓‘𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘〈𝑋, 𝑌〉)) |
| 45 | 35, 42, 44 | syl2anc 693 |
. . . 4
⊢ (𝜑 →
(+𝑓‘𝐺) ∈ ((((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) CnP (TopOpen‘𝐺))‘〈𝑋, 𝑌〉)) |
| 46 | 21, 21, 27, 28, 29, 31, 33, 45 | flfcnp2 21811 |
. . 3
⊢ (𝜑 → (𝑋(+𝑓‘𝐺)𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
| 47 | 18, 46 | eqeltrrd 2702 |
. 2
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
| 48 | | cmnmnd 18208 |
. . . . . . 7
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 49 | 2, 48 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 50 | 1, 15 | mndcl 17301 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 51 | 50 | 3expb 1266 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 52 | 49, 51 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 53 | | inidm 3822 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 54 | 52, 7, 11, 6, 6, 53 | off 6912 |
. . . 4
⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐻):𝐴⟶𝐵) |
| 55 | 1, 19, 22, 24, 2, 6, 54 | tsmsval 21934 |
. . 3
⊢ (𝜑 → (𝐺 tsums (𝐹 ∘𝑓 + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧))))) |
| 56 | | eqid 2622 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 57 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd) |
| 58 | | elfpw 8268 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin)) |
| 59 | 58 | simprbi 480 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ∈ Fin) |
| 60 | 59 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑧 ∈ Fin) |
| 61 | 58 | simplbi 476 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝑧 ⊆ 𝐴) |
| 62 | | fssres 6070 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑧 ⊆ 𝐴) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
| 63 | 7, 61, 62 | syl2an 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧):𝑧⟶𝐵) |
| 64 | | fssres 6070 |
. . . . . . . 8
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑧 ⊆ 𝐴) → (𝐻 ↾ 𝑧):𝑧⟶𝐵) |
| 65 | 11, 61, 64 | syl2an 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 ↾ 𝑧):𝑧⟶𝐵) |
| 66 | | fvex 6201 |
. . . . . . . . 9
⊢
(0g‘𝐺) ∈ V |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) →
(0g‘𝐺)
∈ V) |
| 68 | 63, 60, 67 | fdmfifsupp 8285 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 ↾ 𝑧) finSupp (0g‘𝐺)) |
| 69 | 65, 60, 67 | fdmfifsupp 8285 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 ↾ 𝑧) finSupp (0g‘𝐺)) |
| 70 | 1, 56, 15, 57, 60, 63, 65, 68, 69 | gsumadd 18323 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ↾ 𝑧) ∘𝑓 + (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
| 71 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(Base‘𝐺)
∈ V |
| 72 | 1, 71 | eqeltri 2697 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
| 73 | 72 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ V) |
| 74 | | fex2 7121 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 75 | 7, 6, 73, 74 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
| 76 | | fex2 7121 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V) → 𝐻 ∈ V) |
| 77 | 11, 6, 73, 76 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ V) |
| 78 | | offres 7163 |
. . . . . . . . 9
⊢ ((𝐹 ∈ V ∧ 𝐻 ∈ V) → ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘𝑓 + (𝐻 ↾ 𝑧))) |
| 79 | 75, 77, 78 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘𝑓 + 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘𝑓 + (𝐻 ↾ 𝑧))) |
| 80 | 79 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 ∘𝑓 + 𝐻) ↾ 𝑧) = ((𝐹 ↾ 𝑧) ∘𝑓 + (𝐻 ↾ 𝑧))) |
| 81 | 80 | oveq2d 6666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧)) = (𝐺 Σg ((𝐹 ↾ 𝑧) ∘𝑓 + (𝐻 ↾ 𝑧)))) |
| 82 | 1, 15, 16 | plusfval 17248 |
. . . . . . 7
⊢ (((𝐺 Σg
(𝐹 ↾ 𝑧)) ∈ 𝐵 ∧ (𝐺 Σg (𝐻 ↾ 𝑧)) ∈ 𝐵) → ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
| 83 | 28, 29, 82 | syl2anc 693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))) = ((𝐺 Σg (𝐹 ↾ 𝑧)) + (𝐺 Σg (𝐻 ↾ 𝑧)))) |
| 84 | 70, 81, 83 | 3eqtr4d 2666 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧)) = ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))) |
| 85 | 84 | mpteq2dva 4744 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧))))) |
| 86 | 85 | fveq2d 6195 |
. . 3
⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg ((𝐹 ∘𝑓
+ 𝐻) ↾ 𝑧)))) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
| 87 | 55, 86 | eqtrd 2656 |
. 2
⊢ (𝜑 → (𝐺 tsums (𝐹 ∘𝑓 + 𝐻)) = (((TopOpen‘𝐺) fLimf ((𝒫 𝐴 ∩ Fin)filGenran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ {𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∣ 𝑦 ⊆ 𝑧})))‘(𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((𝐺 Σg (𝐹 ↾ 𝑧))(+𝑓‘𝐺)(𝐺 Σg (𝐻 ↾ 𝑧)))))) |
| 88 | 47, 87 | eleqtrrd 2704 |
1
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐺 tsums (𝐹 ∘𝑓 + 𝐻))) |