MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmspropd Structured version   Visualization version   GIF version

Theorem tsmspropd 21935
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmspropd.f (𝜑𝐹𝑉)
tsmspropd.g (𝜑𝐺𝑊)
tsmspropd.h (𝜑𝐻𝑋)
tsmspropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
tsmspropd.p (𝜑 → (+g𝐺) = (+g𝐻))
tsmspropd.j (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
Assertion
Ref Expression
tsmspropd (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))

Proof of Theorem tsmspropd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmspropd.j . . . 4 (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻))
21oveq1d 6665 . . 3 (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}))))
3 tsmspropd.f . . . . . 6 (𝜑𝐹𝑉)
4 resexg 5442 . . . . . 6 (𝐹𝑉 → (𝐹𝑦) ∈ V)
53, 4syl 17 . . . . 5 (𝜑 → (𝐹𝑦) ∈ V)
6 tsmspropd.g . . . . 5 (𝜑𝐺𝑊)
7 tsmspropd.h . . . . 5 (𝜑𝐻𝑋)
8 tsmspropd.b . . . . 5 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
9 tsmspropd.p . . . . 5 (𝜑 → (+g𝐺) = (+g𝐻))
105, 6, 7, 8, 9gsumpropd 17272 . . . 4 (𝜑 → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
1110mpteq2dv 4745 . . 3 (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦))))
122, 11fveq12d 6197 . 2 (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
13 eqid 2622 . . 3 (Base‘𝐺) = (Base‘𝐺)
14 eqid 2622 . . 3 (TopOpen‘𝐺) = (TopOpen‘𝐺)
15 eqid 2622 . . 3 (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin)
16 eqid 2622 . . 3 ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})
17 eqidd 2623 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
1813, 14, 15, 16, 6, 3, 17tsmsval2 21933 . 2 (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑦)))))
19 eqid 2622 . . 3 (Base‘𝐻) = (Base‘𝐻)
20 eqid 2622 . . 3 (TopOpen‘𝐻) = (TopOpen‘𝐻)
2119, 20, 15, 16, 7, 3, 17tsmsval2 21933 . 2 (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹𝑦)))))
2212, 18, 213eqtr4d 2666 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  cfv 5888  (class class class)co 6650  Fincfn 7955  Basecbs 15857  +gcplusg 15941  TopOpenctopn 16082   Σg cgsu 16101  filGencfg 19735   fLimf cflf 21739   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seq 12802  df-0g 16102  df-gsum 16103  df-tsms 21930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator