![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsmspropd | Structured version Visualization version GIF version |
Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd 17316 etc. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
tsmspropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
tsmspropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
tsmspropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
tsmspropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
tsmspropd.p | ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) |
tsmspropd.j | ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) |
Ref | Expression |
---|---|
tsmspropd | ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsmspropd.j | . . . 4 ⊢ (𝜑 → (TopOpen‘𝐺) = (TopOpen‘𝐻)) | |
2 | 1 | oveq1d 6665 | . . 3 ⊢ (𝜑 → ((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}))) = ((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))) |
3 | tsmspropd.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
4 | resexg 5442 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ↾ 𝑦) ∈ V) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ↾ 𝑦) ∈ V) |
6 | tsmspropd.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
7 | tsmspropd.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
8 | tsmspropd.b | . . . . 5 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
9 | tsmspropd.p | . . . . 5 ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) | |
10 | 5, 6, 7, 8, 9 | gsumpropd 17272 | . . . 4 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑦)) = (𝐻 Σg (𝐹 ↾ 𝑦))) |
11 | 10 | mpteq2dv 4745 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))) = (𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦)))) |
12 | 2, 11 | fveq12d 6197 | . 2 ⊢ (𝜑 → (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦)))) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
13 | eqid 2622 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
14 | eqid 2622 | . . 3 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
15 | eqid 2622 | . . 3 ⊢ (𝒫 dom 𝐹 ∩ Fin) = (𝒫 dom 𝐹 ∩ Fin) | |
16 | eqid 2622 | . . 3 ⊢ ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) = ran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦}) | |
17 | eqidd 2623 | . . 3 ⊢ (𝜑 → dom 𝐹 = dom 𝐹) | |
18 | 13, 14, 15, 16, 6, 3, 17 | tsmsval2 21933 | . 2 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (((TopOpen‘𝐺) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐺 Σg (𝐹 ↾ 𝑦))))) |
19 | eqid 2622 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
20 | eqid 2622 | . . 3 ⊢ (TopOpen‘𝐻) = (TopOpen‘𝐻) | |
21 | 19, 20, 15, 16, 7, 3, 17 | tsmsval2 21933 | . 2 ⊢ (𝜑 → (𝐻 tsums 𝐹) = (((TopOpen‘𝐻) fLimf ((𝒫 dom 𝐹 ∩ Fin)filGenran (𝑧 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ {𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ (𝒫 dom 𝐹 ∩ Fin) ↦ (𝐻 Σg (𝐹 ↾ 𝑦))))) |
22 | 12, 18, 21 | 3eqtr4d 2666 | 1 ⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐻 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 ↦ cmpt 4729 dom cdm 5114 ran crn 5115 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 Basecbs 15857 +gcplusg 15941 TopOpenctopn 16082 Σg cgsu 16101 filGencfg 19735 fLimf cflf 21739 tsums ctsu 21929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-seq 12802 df-0g 16102 df-gsum 16103 df-tsms 21930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |