![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrabdv | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.) |
Ref | Expression |
---|---|
ssrabdv.1 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
ssrabdv.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
ssrabdv | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdv.1 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | ssrabdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
3 | 2 | ralrimiva 2966 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
4 | ssrab 3680 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) | |
5 | 1, 3, 4 | sylanbrc 698 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-in 3581 df-ss 3588 |
This theorem is referenced by: mrcmndind 17366 symggen 17890 ablfac1eu 18472 lspsolvlem 19142 prdsxmslem2 22334 ovolicc2lem4 23288 abelth2 24196 perfectlem2 24955 umgrres1lem 26202 upgrres1 26205 cvmlift2lem11 31295 bj-rabtrAUTO 32929 mapdrvallem3 36935 idomsubgmo 37776 k0004ss2 38450 liminfvalxr 40015 smflimlem4 40982 perfectALTVlem2 41631 |
Copyright terms: Public domain | W3C validator |