MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres1 Structured version   Visualization version   Unicode version

Theorem upgrres1 26205
Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr 26160 since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v  |-  V  =  (Vtx `  G )
upgrres1.e  |-  E  =  (Edg `  G )
upgrres1.f  |-  F  =  { e  e.  E  |  N  e/  e }
upgrres1.s  |-  S  = 
<. ( V  \  { N } ) ,  (  _I  |`  F ) >.
Assertion
Ref Expression
upgrres1  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  S  e. UPGraph  )
Distinct variable groups:    e, E    e, G    e, N    e, V
Allowed substitution hints:    S( e)    F( e)

Proof of Theorem upgrres1
Dummy variables  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . . . 5  |-  (  _I  |`  F ) : F -1-1-onto-> F
2 f1of 6137 . . . . 5  |-  ( (  _I  |`  F ) : F -1-1-onto-> F  ->  (  _I  |`  F ) : F --> F )
31, 2mp1i 13 . . . 4  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  (  _I  |`  F ) : F --> F )
43ffdmd 6063 . . 3  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  (  _I  |`  F ) : dom  (  _I  |`  F ) --> F )
5 upgrres1.f . . . . 5  |-  F  =  { e  e.  E  |  N  e/  e }
6 simpr 477 . . . . . . . . . . 11  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  e  e.  E )  ->  e  e.  E )
76adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  e  e.  E )
8 upgrres1.e . . . . . . . . . . . . 13  |-  E  =  (Edg `  G )
98eleq2i 2693 . . . . . . . . . . . 12  |-  ( e  e.  E  <->  e  e.  (Edg `  G ) )
10 edgupgr 26029 . . . . . . . . . . . . 13  |-  ( ( G  e. UPGraph  /\  e  e.  (Edg `  G )
)  ->  ( e  e.  ~P (Vtx `  G
)  /\  e  =/=  (/) 
/\  ( # `  e
)  <_  2 ) )
11 elpwi 4168 . . . . . . . . . . . . . . 15  |-  ( e  e.  ~P (Vtx `  G )  ->  e  C_  (Vtx `  G )
)
12 upgrres1.v . . . . . . . . . . . . . . 15  |-  V  =  (Vtx `  G )
1311, 12syl6sseqr 3652 . . . . . . . . . . . . . 14  |-  ( e  e.  ~P (Vtx `  G )  ->  e  C_  V )
14133ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( e  e.  ~P (Vtx `  G )  /\  e  =/=  (/)  /\  ( # `  e )  <_  2
)  ->  e  C_  V )
1510, 14syl 17 . . . . . . . . . . . 12  |-  ( ( G  e. UPGraph  /\  e  e.  (Edg `  G )
)  ->  e  C_  V )
169, 15sylan2b 492 . . . . . . . . . . 11  |-  ( ( G  e. UPGraph  /\  e  e.  E )  ->  e  C_  V )
1716ad4ant13 1292 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  e  C_  V )
18 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  N  e/  e )
19 elpwdifsn 4319 . . . . . . . . . 10  |-  ( ( e  e.  E  /\  e  C_  V  /\  N  e/  e )  ->  e  e.  ~P ( V  \  { N } ) )
207, 17, 18, 19syl3anc 1326 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  e  e.  ~P ( V  \  { N } ) )
21 simpl 473 . . . . . . . . . . . 12  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  G  e. UPGraph  )
229biimpi 206 . . . . . . . . . . . 12  |-  ( e  e.  E  ->  e  e.  (Edg `  G )
)
2310simp2d 1074 . . . . . . . . . . . 12  |-  ( ( G  e. UPGraph  /\  e  e.  (Edg `  G )
)  ->  e  =/=  (/) )
2421, 22, 23syl2an 494 . . . . . . . . . . 11  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  e  e.  E )  ->  e  =/=  (/) )
2524adantr 481 . . . . . . . . . 10  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  e  =/=  (/) )
26 nelsn 4212 . . . . . . . . . 10  |-  ( e  =/=  (/)  ->  -.  e  e.  { (/) } )
2725, 26syl 17 . . . . . . . . 9  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  -.  e  e.  { (/) } )
2820, 27eldifd 3585 . . . . . . . 8  |-  ( ( ( ( G  e. UPGraph  /\  N  e.  V
)  /\  e  e.  E )  /\  N  e/  e )  ->  e  e.  ( ~P ( V 
\  { N }
)  \  { (/) } ) )
2928ex 450 . . . . . . 7  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  e  e.  E )  ->  ( N  e/  e  ->  e  e.  ( ~P ( V 
\  { N }
)  \  { (/) } ) ) )
3029ralrimiva 2966 . . . . . 6  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  A. e  e.  E  ( N  e/  e  ->  e  e.  ( ~P ( V 
\  { N }
)  \  { (/) } ) ) )
31 rabss 3679 . . . . . 6  |-  ( { e  e.  E  |  N  e/  e }  C_  ( ~P ( V  \  { N } )  \  { (/) } )  <->  A. e  e.  E  ( N  e/  e  ->  e  e.  ( ~P ( V 
\  { N }
)  \  { (/) } ) ) )
3230, 31sylibr 224 . . . . 5  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  { e  e.  E  |  N  e/  e }  C_  ( ~P ( V  \  { N } )  \  { (/)
} ) )
335, 32syl5eqss 3649 . . . 4  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  F  C_  ( ~P ( V 
\  { N }
)  \  { (/) } ) )
34 elrabi 3359 . . . . . . 7  |-  ( p  e.  { e  e.  E  |  N  e/  e }  ->  p  e.  E )
35 edgval 25941 . . . . . . . . . . . 12  |-  (Edg `  G )  =  ran  (iEdg `  G )
368, 35eqtri 2644 . . . . . . . . . . 11  |-  E  =  ran  (iEdg `  G
)
3736eleq2i 2693 . . . . . . . . . 10  |-  ( p  e.  E  <->  p  e.  ran  (iEdg `  G )
)
38 eqid 2622 . . . . . . . . . . . . 13  |-  (iEdg `  G )  =  (iEdg `  G )
3912, 38upgrf 25981 . . . . . . . . . . . 12  |-  ( G  e. UPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
40 frn 6053 . . . . . . . . . . . 12  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 }  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
4139, 40syl 17 . . . . . . . . . . 11  |-  ( G  e. UPGraph  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
4241sseld 3602 . . . . . . . . . 10  |-  ( G  e. UPGraph  ->  ( p  e. 
ran  (iEdg `  G )  ->  p  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
4337, 42syl5bi 232 . . . . . . . . 9  |-  ( G  e. UPGraph  ->  ( p  e.  E  ->  p  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } ) )
44 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  p  ->  ( # `
 x )  =  ( # `  p
) )
4544breq1d 4663 . . . . . . . . . . 11  |-  ( x  =  p  ->  (
( # `  x )  <_  2  <->  ( # `  p
)  <_  2 ) )
4645elrab 3363 . . . . . . . . . 10  |-  ( p  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  <->  ( p  e.  ( ~P V  \  { (/) } )  /\  ( # `  p )  <_  2
) )
4746simprbi 480 . . . . . . . . 9  |-  ( p  e.  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( # `  p
)  <_  2 )
4843, 47syl6 35 . . . . . . . 8  |-  ( G  e. UPGraph  ->  ( p  e.  E  ->  ( # `  p
)  <_  2 ) )
4948adantr 481 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  (
p  e.  E  -> 
( # `  p )  <_  2 ) )
5034, 49syl5com 31 . . . . . 6  |-  ( p  e.  { e  e.  E  |  N  e/  e }  ->  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ( # `
 p )  <_ 
2 ) )
5150, 5eleq2s 2719 . . . . 5  |-  ( p  e.  F  ->  (
( G  e. UPGraph  /\  N  e.  V )  ->  ( # `
 p )  <_ 
2 ) )
5251impcom 446 . . . 4  |-  ( ( ( G  e. UPGraph  /\  N  e.  V )  /\  p  e.  F )  ->  ( # `
 p )  <_ 
2 )
5333, 52ssrabdv 3681 . . 3  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  F  C_ 
{ p  e.  ( ~P ( V  \  { N } )  \  { (/) } )  |  ( # `  p
)  <_  2 }
)
544, 53fssd 6057 . 2  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  (  _I  |`  F ) : dom  (  _I  |`  F ) --> { p  e.  ( ~P ( V  \  { N } )  \  { (/) } )  |  ( # `  p
)  <_  2 }
)
55 upgrres1.s . . . 4  |-  S  = 
<. ( V  \  { N } ) ,  (  _I  |`  F ) >.
56 opex 4932 . . . 4  |-  <. ( V  \  { N }
) ,  (  _I  |`  F ) >.  e.  _V
5755, 56eqeltri 2697 . . 3  |-  S  e. 
_V
5812, 8, 5, 55upgrres1lem2 26203 . . . . 5  |-  (Vtx `  S )  =  ( V  \  { N } )
5958eqcomi 2631 . . . 4  |-  ( V 
\  { N }
)  =  (Vtx `  S )
6012, 8, 5, 55upgrres1lem3 26204 . . . . 5  |-  (iEdg `  S )  =  (  _I  |`  F )
6160eqcomi 2631 . . . 4  |-  (  _I  |`  F )  =  (iEdg `  S )
6259, 61isupgr 25979 . . 3  |-  ( S  e.  _V  ->  ( S  e. UPGraph  <->  (  _I  |`  F ) : dom  (  _I  |`  F ) --> { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
6357, 62mp1i 13 . 2  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ( S  e. UPGraph  <->  (  _I  |`  F ) : dom  (  _I  |`  F ) --> { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
6454, 63mpbird 247 1  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  S  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-upgr 25977
This theorem is referenced by:  nbupgrres  26266
  Copyright terms: Public domain W3C validator