MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssel Structured version   Visualization version   Unicode version

Theorem ustssel 22009
Description: A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustssel  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( V  C_  W  ->  W  e.  U ) )

Proof of Theorem ustssel
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  U  e.  (UnifOn `  X )
)
21elfvexd 6222 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  X  e.  _V )
3 isust 22007 . . . . . 6  |-  ( X  e.  _V  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
42, 3syl 17 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( U  e.  (UnifOn `  X
)  <->  ( U  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) ) )
51, 4mpbid 222 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( U  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  U  /\  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) ) )
65simp3d 1075 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  U )  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) ) )
7 simp1 1061 . . . 4  |-  ( ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
) )
87ralimi 2952 . . 3  |-  ( A. v  e.  U  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  /\  A. w  e.  U  ( v  i^i  w )  e.  U  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  U  /\  E. w  e.  U  ( w  o.  w ) 
C_  v ) )  ->  A. v  e.  U  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
) )
96, 8syl 17 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  A. v  e.  U  A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U ) )
10 simp2 1062 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  V  e.  U )
11 xpexg 6960 . . . . 5  |-  ( ( X  e.  _V  /\  X  e.  _V )  ->  ( X  X.  X
)  e.  _V )
122, 2, 11syl2anc 693 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( X  X.  X )  e. 
_V )
13 simp3 1063 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  W  C_  ( X  X.  X
) )
1412, 13sselpwd 4807 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  W  e.  ~P ( X  X.  X ) )
15 sseq1 3626 . . . . 5  |-  ( v  =  V  ->  (
v  C_  w  <->  V  C_  w
) )
1615imbi1d 331 . . . 4  |-  ( v  =  V  ->  (
( v  C_  w  ->  w  e.  U )  <-> 
( V  C_  w  ->  w  e.  U ) ) )
17 sseq2 3627 . . . . 5  |-  ( w  =  W  ->  ( V  C_  w  <->  V  C_  W
) )
18 eleq1 2689 . . . . 5  |-  ( w  =  W  ->  (
w  e.  U  <->  W  e.  U ) )
1917, 18imbi12d 334 . . . 4  |-  ( w  =  W  ->  (
( V  C_  w  ->  w  e.  U )  <-> 
( V  C_  W  ->  W  e.  U ) ) )
2016, 19rspc2v 3322 . . 3  |-  ( ( V  e.  U  /\  W  e.  ~P ( X  X.  X ) )  ->  ( A. v  e.  U  A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  U )  ->  ( V  C_  W  ->  W  e.  U ) ) )
2110, 14, 20syl2anc 693 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( A. v  e.  U  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  U
)  ->  ( V  C_  W  ->  W  e.  U ) ) )
229, 21mpd 15 1  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  U  /\  W  C_  ( X  X.  X
) )  ->  ( V  C_  W  ->  W  e.  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  trust  22033  ustuqtop1  22045  ucnprima  22086
  Copyright terms: Public domain W3C validator