MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop3 Structured version   Visualization version   Unicode version

Theorem ustuqtop3 22047
Description: Lemma for ustuqtop 22050, similar to elnei 20915. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
ustuqtop3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
Distinct variable groups:    v, p, U    X, p, v, a    N, a, p    v, a, U    X, a
Allowed substitution hint:    N( v)

Proof of Theorem ustuqtop3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fnresi 6008 . . . . . . 7  |-  (  _I  |`  X )  Fn  X
2 fnsnfv 6258 . . . . . . 7  |-  ( ( (  _I  |`  X )  Fn  X  /\  p  e.  X )  ->  { ( (  _I  |`  X ) `
 p ) }  =  ( (  _I  |`  X ) " {
p } ) )
31, 2mpan 706 . . . . . 6  |-  ( p  e.  X  ->  { ( (  _I  |`  X ) `
 p ) }  =  ( (  _I  |`  X ) " {
p } ) )
43ad4antlr 769 . . . . 5  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  { (
(  _I  |`  X ) `
 p ) }  =  ( (  _I  |`  X ) " {
p } ) )
5 simp-4l 806 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  U  e.  (UnifOn `  X ) )
6 simplr 792 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  w  e.  U )
7 ustdiag 22012 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U )  ->  (  _I  |`  X )  C_  w )
85, 6, 7syl2anc 693 . . . . . 6  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  (  _I  |`  X )  C_  w
)
9 imass1 5500 . . . . . 6  |-  ( (  _I  |`  X )  C_  w  ->  ( (  _I  |`  X ) " { p } ) 
C_  ( w " { p } ) )
108, 9syl 17 . . . . 5  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( (  _I  |`  X ) " { p } ) 
C_  ( w " { p } ) )
114, 10eqsstrd 3639 . . . 4  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  { (
(  _I  |`  X ) `
 p ) } 
C_  ( w " { p } ) )
12 fvex 6201 . . . . 5  |-  ( (  _I  |`  X ) `  p )  e.  _V
1312snss 4316 . . . 4  |-  ( ( (  _I  |`  X ) `
 p )  e.  ( w " {
p } )  <->  { (
(  _I  |`  X ) `
 p ) } 
C_  ( w " { p } ) )
1411, 13sylibr 224 . . 3  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( (  _I  |`  X ) `  p )  e.  ( w " { p } ) )
15 fvresi 6439 . . . . 5  |-  ( p  e.  X  ->  (
(  _I  |`  X ) `
 p )  =  p )
1615eqcomd 2628 . . . 4  |-  ( p  e.  X  ->  p  =  ( (  _I  |`  X ) `  p
) )
1716ad4antlr 769 . . 3  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  p  =  ( (  _I  |`  X ) `
 p ) )
18 simpr 477 . . 3  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  a  =  ( w " {
p } ) )
1914, 17, 183eltr4d 2716 . 2  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  p  e.  a )
20 vex 3203 . . . 4  |-  a  e. 
_V
21 utopustuq.1 . . . . 5  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
2221ustuqtoplem 22043 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  _V )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
2320, 22mpan2 707 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
2423biimpa 501 . 2  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. w  e.  U  a  =  ( w " {
p } ) )
2519, 24r19.29a 3078 1  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177    |-> cmpt 4729    _I cid 5023   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustuqtop  22050  utopsnneiplem  22051
  Copyright terms: Public domain W3C validator