![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvtxa0 | Structured version Visualization version GIF version |
Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) |
Ref | Expression |
---|---|
uvtxael.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
uvtxa0 | ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxael.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | uvtxaval 26287 | . . . . 5 ⊢ (𝐺 ∈ V → (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
3 | 2 | adantr 481 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑉 = ∅) → (UnivVtx‘𝐺) = {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) |
4 | rab0 3955 | . . . . 5 ⊢ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ | |
5 | rabeq 3192 | . . . . . . 7 ⊢ (𝑉 = ∅ → {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}) | |
6 | 5 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑉 = ∅ → ({𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ ↔ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅)) |
7 | 6 | adantl 482 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑉 = ∅) → ({𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ ↔ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅)) |
8 | 4, 7 | mpbiri 248 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑉 = ∅) → {𝑣 ∈ 𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅) |
9 | 3, 8 | eqtrd 2656 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑉 = ∅) → (UnivVtx‘𝐺) = ∅) |
10 | 9 | ex 450 | . 2 ⊢ (𝐺 ∈ V → (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)) |
11 | fvprc 6185 | . . 3 ⊢ (¬ 𝐺 ∈ V → (UnivVtx‘𝐺) = ∅) | |
12 | 11 | a1d 25 | . 2 ⊢ (¬ 𝐺 ∈ V → (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)) |
13 | 10, 12 | pm2.61i 176 | 1 ⊢ (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 {csn 4177 ‘cfv 5888 (class class class)co 6650 Vtxcvtx 25874 NeighbVtx cnbgr 26224 UnivVtxcuvtxa 26225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-uvtxa 26230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |