MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtxa0 Structured version   Visualization version   GIF version

Theorem uvtxa0 26294
Description: There is no universal vertex if there is no vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.)
Hypothesis
Ref Expression
uvtxael.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
uvtxa0 (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)

Proof of Theorem uvtxa0
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxael.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21uvtxaval 26287 . . . . 5 (𝐺 ∈ V → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
32adantr 481 . . . 4 ((𝐺 ∈ V ∧ 𝑉 = ∅) → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
4 rab0 3955 . . . . 5 {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅
5 rabeq 3192 . . . . . . 7 (𝑉 = ∅ → {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
65eqeq1d 2624 . . . . . 6 (𝑉 = ∅ → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ ↔ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅))
76adantl 482 . . . . 5 ((𝐺 ∈ V ∧ 𝑉 = ∅) → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅ ↔ {𝑣 ∈ ∅ ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅))
84, 7mpbiri 248 . . . 4 ((𝐺 ∈ V ∧ 𝑉 = ∅) → {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} = ∅)
93, 8eqtrd 2656 . . 3 ((𝐺 ∈ V ∧ 𝑉 = ∅) → (UnivVtx‘𝐺) = ∅)
109ex 450 . 2 (𝐺 ∈ V → (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅))
11 fvprc 6185 . . 3 𝐺 ∈ V → (UnivVtx‘𝐺) = ∅)
1211a1d 25 . 2 𝐺 ∈ V → (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅))
1310, 12pm2.61i 176 1 (𝑉 = ∅ → (UnivVtx‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  c0 3915  {csn 4177  cfv 5888  (class class class)co 6650  Vtxcvtx 25874   NeighbVtx cnbgr 26224  UnivVtxcuvtxa 26225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-uvtxa 26230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator